
Grant Agreement No.: 687645
Research and Innovation action
Call Topic: H2020 ICT-19-2015

Object-based broadcasting – for European leadership in next
generation audio experiences

D4.2: Interim report on the work on representation archiving and
provision of object-based audio

Version: v0.7

Deliverable type R (Document, report)

Dissemination level PU (Public)

Due date 31/03/2017

Submission date 12/05/2017

Lead editor Andreas Silzle (FHG)

Authors Nikolaus Färber (FHG), Michael Meier (IRT), Tilman Herberger (Magix),
Andrew Mason (BBC), Chris Baume (BBC), Matt Firth (BBC), Matt Paradis
(BBC)

Reviewers Werner Bleisteiner (BR)

Work package, Task WP 4, T4.1, T4.2, and T4.3

Keywords Formats, BW64, ADM, NMOS, UMCP, MPEG-H, DASH, IP-Studio, Sequoia,
iOS app, browsers

Abstract

This deliverable describes the progress on representation, archiving and provision of object-based
audio. It builds on D4.1 “Requirements for representation, archiving and provision of object-based
audio”. It lists the formats which are selected for ORPHEUS and describes the interim status of the
implementation of these formats. On the production side, formats like BW64, ADM, NMOS, UMCP
are used and explained. BW64 is also used for archiving. For provision or distribution MPEG-H and
AAC + ADM metadata are selected. Both solutions use MPEG-DASH for streaming.

This Deliverables also serves as documentation for milestone MS12 “Initial implementation and
documentation of a format for provision of objected-based audio” which has been achieved on
31/03/17.

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 2 of 38

Document revision history

Version Date Description of change List of contributor(s)

0v1 28/03/2017 Initial version Andreas Silzle (FHG), Nikolaus
Färber (FHG)

0v2 10/042017 Merge of input from IRT, Magix, BBC,
FHG

Michael Meier (IRT), Tilman
Herberger (Magix), Andrew Mason
(BBC), Chris Baume (BBC)

0v3 11/04/2017 Added UMCP description Chris Baume (BBC), Matt Firth
(BBC), Andrew Mason (BBC)

0v4 12/04/2017 Added AAC+ADM distribution
description, and IP Studio
implementation overview

Matt Paradis (BBC), Chris Baume
(BBC)

0v5 19/04/2017 MPEG-DASH, MPEG-H streaming Nikolaus Färber (FHG)

0v6 26/04/2017 Archiving, metadata translation Michael Meier (IRT), Nikolaus
Färber (FHG)

0v7 12/05/2017 Final editing and submission EURES

Disclaimer

This report contains material which is the copyright of certain ORPHEUS Consortium Parties and may
not be reproduced or copied without permission.

All ORPHEUS Consortium Parties have agreed to publication of this report, the content of which is
licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License1.

Neither the ORPHEUS Consortium Parties nor the European Commission warrant that the
information contained in the Deliverable is capable of use, or that use of the information is free from
risk, and accept no liability for loss or damage suffered by any person using the information.

Copyright notice

© 2015 - 2018 ORPHEUS Consortium Parties

1
 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 3 of 38

Executive Summary

This deliverable describes the progress on representation, archiving and provision of object-based
audio. It builds on D4.1 “Requirements for representation, archiving and provision of object-based
audio”.

This deliverable lists the formats which are selected for the ORPHEUS project and describes their
interim status of implementation. On the production side formats like BW64, ADM, NMOS, UMCP are
selected, used and explained. BW64 is the main format for audio and metadata. It allows file sizes
larger than 4 GByte and includes the metadata in ADM format. The within the ORPHEUS project
necessary and selected metadata parameters are nominated and explained, including their
respective value range. NMOS and UMCP are described as fundamental formats in BBC’s IP Studio
production software. For UMCP an example is given in Appendix A.

Various ongoing standardisation activities for these formats, in which several partners are involved,
are mentioned. The implementation status of the formats in IP Studio and the DAW Sequoia are
explained as well as practical issues for ADM to MPEG-H metadata conversions and the requirements
for archiving using BW64.

For provision or distribution to the end-user MPEG-DASH is used for streaming to HTML5 browsers or
the MPEG-H clients. The used standards and the technical details for MPEG-DASH and the AAC plus
ADM Streaming are listed, as well as the streaming solution of MPEG-H over DASH. For AAC plus
ADM streaming the necessary steps are encoding, segmentation, transfer to public domain, media
reference and playback and rendering. The advanced features of the Next Generation Audio (NGA)
codec MPEG-H are mentioned, including the way how packaged into MPEG-DASH. Short syntax
examples are given for both cases. The delivered software packages and the status of the
implementation at the different partners are described, for the browser, AV receiver and the iOS
mobile application.

Several references to the used standards and explaining publications are given.

This Deliverables also serves as documentation for milestone MS12 “Initial implementation and
documentation of a format for provision of objected-based audio” which has been achieved on
31/03/17.

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 4 of 38

Table of Contents

Executive Summary .. 3

Table of Contents ... 4

List of Figures ... 6

List of Tables .. 7

Abbreviations ... 8

1 Introduction ... 9

2 Production Formats for Distribution and Archiving .. 10

2.1 Broadcast Wave (BW64) ... 10

2.2 Audio Definition Model (ADM) ... 10

2.3 EBUCore ... 13

2.4 AES67 ... 13

2.5 NMOS ... 14

2.6 UMCP ... 14

2.6.1 Foundational Technologies .. 15

2.6.2 Data Model .. 15

2.6.3 Working Principle ... 15

2.6.4 Example.. 16

2.7 The Broadcast Metadata Exchange Format (BMF) .. 16

2.8 Standardization ... 16

2.9 Implementation .. 17

2.9.1 IP Studio ... 17

2.9.2 Audio .. 17

2.9.3 Metadata ... 17

2.9.4 Sequoia DAW ... 18

2.9.5 Translation of ADM to MPEG-H .. 20

2.10 Archiving .. 23

3 Provision Formats for Distribution to the End-user .. 25

3.1 MPEG-DASH ... 25

3.2 AAC + ADM Streaming .. 26

3.2.1 Encoding .. 26

3.2.2 Segmentation ... 27

3.2.3 Transfer to public domain.. 27

3.2.4 Media reference .. 27

3.2.5 Playback and rendering ... 29

3.3 MPEG-H Streaming .. 29

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 5 of 38

3.3.1 MPEG-H 3D Audio .. 29

3.3.2 MPEG-H over DASH ... 30

3.4 Implementation .. 31

4 Conclusions .. 33

References ... 34

Appendix A Example UMCP composition ... 35

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 6 of 38

List of Figures

Figure 1: Single audio object tracks in Sequoia ... 18

Figure 2: Highlighted folder tracks in Sequoia .. 19

Figure 3: Highlighted audio tracks in Sequoia ... 19

Figure 4: Illustration of the feature-space of audio-related metadata in ADM and MPEG-H. For a
direct translation it is required to restrict the features to the common subset (shaded grey). 21

Figure 5: Simple IP Studio pipeline generating 2 stereo audio streams and a single metadata stream26

Figure 6: NMOS Node API showing available live “senders” from which media can be consumed. 27

Figure 7: Aggregate Manifest generated from available media which is not located on AWS. 28

Figure 8: Example MPD for streaming MPEG-H over DASH .. 31

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 7 of 38

List of Tables

Table 1: ADM typeDefinitions ... 11

Table 2: audioBlockFormat elements for "Objects".. 11

Table 3: audioPackFormat element .. 12

Table 4: audioObject elements ... 12

Table 5: audioContent elements ... 12

Table 6: audioProgramme elements ... 12

Table 7: Correspondences between ADM and MPEG-H Structural Metadata (incomplete) 21

Table 8: Restrictions derived from MPEG-H Low Complexity Profile, Level 3 (preliminary) 22

Table 9: Levels for low complexity profile of MPEG-H Audio [12] .. 30

Table 10: Recommended core bitrates for excellent audio quality for broadcast applications [12] ... 30

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 8 of 38

Abbreviations

ADM Audio definition model

AES67 Standard for audio-over-IP interoperability

ASI Audio Scene Information

BBC British Broadcasting Corporation

BR Bayerischer Rundfunk

BW64 Broadcast Wave 64Bit

BWF Broadcast wave

Dante Digital Audio Network Through Ethernet

DASH Dynamic Adaptive Streaming over HTTP

FHG Fraunhofer Gesellschaft

HOA Higher Order Ambisonics

IP Internet Protocol

IPF Instantaneous Playout Frames

ITU-R International Telecommunication Union, Radiocommunication Sector

JSON Format for exchanging object data

Livewire Audio-over-Ethernet system

MHAS MPEG-H Audio Stream

MPD Media Presentation Description

MPEG Moving Picture Experts Group

NGA Next Generation Audio

NMOS Networked Media Open Specifications

OB Outside broadcasting

PCM Pulse-code modulation

Q-LAN Audio over IP audio networking technology component

RAVENNA Technology for real-time transport of audio and other media data

RIFF Resource Interchange File Format

SMIL Synchronized Multimedia Integration Language

UMCP Universal Media Composition Protocol

XML Extensible Markup Language

https://de.wikipedia.org/wiki/Moving_Picture_Experts_Group
https://de.wikipedia.org/wiki/Resource_Interchange_File_Format

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 9 of 38

1 Introduction

This documents builds on deliverable 4.1 “Requirements for Representation, Archiving and Provision
of Object-based Audio”. It lists the formats which are selected for ORPHEUS and describes the
interim status of the implementation of these formats for representation, archiving and provision of
object-based audio. On the production side most of the formats are used, like BW64, ADM, NMOS,
UMCP, see section 2. For the provision or distribution MPEG-H and AAC + ADM metadata streamed
over MPEG-DASH are used, see section 3. The implementation and usage of the different formats in
ORPHEUS and their capabilities are explained.

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 10 of 38

2 Production Formats for Distribution and Archiving

2.1 Broadcast Wave (BW64)

The Broadcast Wave (BW64) format is the successor of Broadcast Wave Format (BWF) [1], the
standard audio data file format used today in broadcast productions. The BW64 format allows for
maximum file sizes larger than 4GB by using 64Bit signalling and is therefore also capable of
transporting immersive audio and a large number of objects. BW64 contains additionally a chunk for
the ADM metadata.

Recommendation ITU-R BS.2088 [2] “Long-form file format for the international exchange of audio
programme materials with metadata” is referred to by the abbreviation “BW64” for “Broadcast
Wave 64Bit”. The BW64 file is a type of Resource Interchange File Format (RIFF) and includes
“chunks” <ds64>, <axml> and <chna> that enable the file to carry large multichannel files and
metadata.

The metadata includes the Audio Definition Model (ADM) specified in Recommendation ITU-R
BS.2076 [3].

The <ds64> chunk provides the larger file size indicator, to allow files bigger than 4 GBytes.

The <axml> chunk is defined for storing and transferring metadata as XML. This is where the ADM
XML metadata will be contained for file-based uses. It can also store non-ADM metadata should it be
required.

The <chna> chunk provides the references from each track in a BW64 file to the IDs in the ADM
metadata defined in Recommendation ITU-R BS.2076.

While the BW64 can handle a variety of different audio sample formats, in ORPHEUS the format will
be:

 24-bit signed PCM

 48kHz sample-rate

BW64 with ADM metadata stored in a <axml> chunk has now been implemented in the Magix
Sequoia DAW, and in IRCAM’s ADM tools. This format is being used for the exchange of programme
material between the project partners, as well as for local storage.

2.2 Audio Definition Model (ADM)

The most recently defined and most complete metadata model that supports the description of
object-based audio (as well as channel-based and scene-based audio) is the “Audio Definition Model”
(ADM), which was selected for use in the ORPHEUS project.

The Audio Definition Model (ADM) is specified in ITU-R BS.2076 [3]. The ADM defines the structure of
a metadata model that allows the format and content of audio files to be reliably described. It
specifies how XML metadata can be generated to provide the definitions of tracks in an audio file. Its
flexibility allows is to indicate channel, object and HOA-based audio, with no limits on size or
complexity of the audio.

Another ADM-related ITU document is ITU-R BS.2094 [4], which describes a list of commonly used
definitions for channel-based audio (common definitions for HOA-based audio are soon to be
released). These common definitions remove the need to denote different configurations explicitly in
files, as they can be simply cross-referenced.

File-based ADM

The specification of the ADM in BS.2076 uses XML as the description language, and is targeted at file-

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 11 of 38

based applications, in particular the BW64 file format (see Section 2.1). This means the audio and its
associated metadata is treated as a single complete continuous file. This works fine for exchange of
complete programmes, but is not suitable for streaming (particularly in live scenarios) where audio
and metadata is being generated and distributed in real-time.

Serial ADM

Currently, the ITU (Rapporteur Group WP6B-RG13 in ITU-R) are developing a serialised (frame-based)
version of the ADM, which will allow for streaming and real-time applications. Although more than
one approach is currently under consideration, it will be compliant with the fundamental metadata
model described in BS.2076. So all the parameters in the file-based version will be available in the
serialised form.

Parameters for ORPHEUS

As the ADM contains a wide range a parameters and possible configurations, it would be very easy to
generate ADM metadata that becomes difficult to process and transcode. Therefore, to ensure the
ADM metadata is manageable in the ORPHEUS project, a subset of parameters needs to be defined.
Each of the ADM elements is covered in the following subsections. It is assumed that all the ID,
naming, ID-referencing, and timing-related attributes and sub-elements will be used.

audioBlockFormat

The majority of the parameters reside within the audioBlockFormat element (which is a child of the
audioChannelFormat element), and can cover all the different types of audio (channel, object, HOA,
etc.). Some of these parameters are for very specific scenarios, which are unlikely to be required in
this project, and will thus be ignored.

The ADM allows different types of audio to be specified using the typeDefinition attribute. For
ORPHEUS we limit ourselves to the two types in Table 1.

Type of audio typeDefinition

Object-based “Objects”

Channel-based “DirectSpeakers”

Table 1: ADM typeDefinitions

For “Objects” type of audioBlockFormats, only the sub-elements in Table 2 should be used.

Sub-element Attributes Possible values Default

position coordinate=”azimuth” -180.0 to 180.0

coordinate=”elevation” -90.0 to 90.0

coordinate=”distance” 0.0 to inf 1.0

gain 0.0 to inf 1.0

diffuse 0.0 to 1.0 0.0

jumpPosition 0 or 1 0

Table 2: audioBlockFormat elements for "Objects"

For “DirectSpeakers” type of audioBlockFormats, only common definitions as specified in [4] are to
be applied.

audioChannelFormat

As audioChannelFormat is the parent of audioBlockFormat, it contains no other sub-elements apart
from ‘frequency’ which is covered by the common definitions.

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 12 of 38

audioPackFormat

As audioPackFormat is for grouping channels it references a list of audioChannelFormats and other
audioPackFormats (for nesting purposes), so it does not contain many other parameters. The only
parameter it carries is shown in Table 3, and can be used in ORPHEUS.

Sub-element Attributes Possible values Default

absoluteDistance 0 .0 to inf 1.0

Table 3: audioPackFormat element

audioObject

This element connects the audio essence with its format. It also contains sub-elements and attributes
related to interactivity. The attributes and sub-elements used in ORPHEUS are shown in Table 4.

Sub-element Attributes Possible values Default

Top Level dialogue 0,1 or 2 2

Top Level interact 0 or 1 0

audioComplementaryObjectIDref AO_xxxx (ID string) N/A

audioObjectInteration Contains sub-elements, all
apply.

N/A

Table 4: audioObject elements

audioContent

The element describes the content of a particular object. The attribute and sub-elements used for
ORPHEUS are shown in Table 5.

Sub-element Attributes Possible values Default

Top Level audioContentLanguage Two-letter language
string

N/A

dialogue 0,1,2 2

nonDialogueContentKind 0,1,2 0

dialogueContentKind 0,…,6 0

mixedContentKind 0,…,3 0

Table 5: audioContent elements

audioProgramme

The element describes the whole programme. The attributes used for ORPHEUS are shown in Table
6.

Sub-element Attributes Possible values Default

Top Level audioProgrammeLanguage Two-letter language
string

N/A

Table 6: audioProgramme elements

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 13 of 38

audioTrackFormat and audioStreamFormat

As the assumed audio format will be PCM, this makes use of the audioTrackFormat and
audioStreamFormats straightforward. There would be a one-to-one connection between the two
elements, with the formatDefinition attribute set to “PCM”. The audioStreamFormat element would
also use a single audioChannelFormatIDRef reference sub-element.

2.3 EBUCore

The “EBUCore” set of metadata defined in EBU Tech 3293 [5] has been identified as being the
minimum information needed to describe radio and television content. It is a collection of basic
descriptive and technical/structural metadata elements for audio-visual content and an extension of
the Dublin Core metadata model2. It is directly compatible with the EBU Class Conceptual Data
Model Tech 3351 [6] leading to its compliant use in Semantic Web and Service Oriented
Architectures.

The specification addresses the creation, management, and preservation of audio-visual material. It
facilitates programme exchanges between broadcasters or between production facilities in
distributed and cloud environments. Beyond production, EBUCore can be used to describe content
for distribution (broadcast, broadband Internet, mobile, or hybrid delivery).

The Audio Definition Model (ADM) has been implemented in EBUCore as a new
“audioFormatExtended” element. The EBUCore schema is kept strictly aligned with approved ITU
changes to Recommendation ITU-R BS.2076.

EBU Tech. 3293 may be downloaded free of charge from the EBU.

It has not yet been decided to what extent EBUCore will be applied within the project.

2.4 AES67

For live production, object-based audio has to be streamed in real-time within the production
workflow. The most common format for IP-based infrastructure is AES67, which was developed by
the Audio Engineering Society and published in September 2013. AES67 is the “AES standard for
audio applications of networks - High-performance streaming audio-over-IP interoperability”.

There are high-performance media networks that support professional quality audio with low
latencies. The level of network performance required to meet these requirements is available on
local-area networks and is achievable on enterprise-scale networks. Before AES67 was published,
there were no recommendations for using in an interoperable manner, the multiplicity of networked
audio systems that had been developed. It is a layer 3 protocol suite based on existing standards and
is designed to allow interoperability between various IP-based audio networking systems such as
RAVENNA, Livewire, Q-LAN and Dante. BBC R&D was actively involved in the development of the
standard within the AES Standards Committee.

AES67 provides comprehensive interoperability recommendations in the areas of synchronization,
media clock identification, network transport, encoding and streaming, session description, and
connection management. It does not in itself define any new protocols. Instead, it provides specific
recommendations for interoperability. It defines how existing protocols are used to create an
interoperable system.

2
 http://dublincore.org/

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 14 of 38

The AES67 description may be purchased from the Audio Engineering Society (free of charge to
members thereof).

BBC R&D’s IP Studio platform uses a very similar scheme to AES67 to achieve low-latency transport
and synchronisation of media. Both use Realtime Transport Protocol (RTP) with timestamps derived
directly from a common network-distributed reference clock. As such it is straightforward to
integrate commercial audio products that implement AES-67 to provide direct IP-based I/O.

The IP Studio implementation adds some additional timing and identity metadata to the streams, but
these are “piggy-backed" using RTP header extensions as defined by the RTP suite of standards, so
compatibility with RTP as used in AES-67 is preserved.

A PTP grand master clock is connected to the IP Studio network that has been set up for the
ORPHEUS project. It is currently synchronized by NTP to BBC R&D’s network time servers; it is
planned to synchronise it to GPS, but the infrastructure (and structure) of the building still present
some challenges.

The AES67-compliant devices on the IP Studio network will be managed using NMOS (see section
2.5), where this can be incorporated into the device. Devices developed by project partners (such as
Magix Sequoia) might be augmented with this, but “off the shelf” products being used, (such as the
Axia XNode), might not.

2.5 NMOS

The Networked Media Open Specifications (NMOS) are a family of specifications, produced by the
Networked Media Incubator (NMI) project by the Advanced Media Workflow Association (AMWA),
related to networked media for professional applications. At the time of writing, NMOS includes
specifications for:

 Stream identification and timing

 Discovery and registration

 Connection management

A full explanation of NMOS and how it is being used in ORPHEUS can be found in Section 2.1 of
Deliverable 3.4 (“Implementation and documentation of a live object-based production
environment”).

2.6 UMCP

The Universal Media Composition Protocol (UMCP) is a method to describe the assembly and
processing of media sources/assets to produce a new piece of media. A UMCP Composition is the
package of instructions required to do this.

Within a typical production workflow, there are likely to be multiple contributing media sources, and
each source may go through various different processors. For example, an audio feed may be
attenuated or amplified and subsequently panned, or a video feed may be cropped, resized and
repositioned. UMCP is used to describe and control these pipelines. These pipelines generally form
an inverted tree structure, culminating in the Composition output. In technical terms, they form a
directed acyclic graph.

Every node (or stage) of the media processing graph is defined by a UMCP Sequence. A Sequence
may control the contribution of media sources in to a pipeline, define and control a processing stage,
or define the ultimate output point of the Composition. The UMCP Composition contains timed
Events to control these Sequences. An event is essentially a collection of instructions for a precise
moment in a Composition timeline. These instructions could control processor parameters or

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 15 of 38

start/stop the feed from a media source. Event instructions are also used to define the
interconnections between nodes to build the processing graph. Since Events can be defined at any
point on the Composition timeline, it is possible to build and modify the processing graph
dynamically over time.

2.6.1 Foundational Technologies

IP Studio is a BBC R&D project to investigate and capitalise on the advantages that an IP production
infrastructure can offer. UMCP uses the software framework developed by the IP Studio project as a
backbone. In particular, it uses the IP Studio Media Access API for retrieving sources of media and for
advertising its own published Compositions.

UMCP is authored, stored and retrieved via an API. The API holds a database of Compositions and the
Events belonging to each Composition. Since these Events are wrapped in a data format utilised by IP
Studio, they can be handled within the IP Studio infrastructure.

2.6.2 Data Model

UMCP is built on the NMOS (Networked Media Open Standard) Content Model, which is also at the
heart of the IP Studio framework. In this model, audio and video streams are divided into very small
segments known as ‘grains’. Each grain carries identifiers and timestamps describing where it came
from and when it was captured in relation to a common reference clock. These grain attributes are
carried with the media payload as it’s streamed, and stored with the grains when recorded. Using
the grain identity and timing attributes, IP Studio client applications can reference live sources in the
same way as they refer to stored content and synchronise content from different streams according
to their original timing relationships

As well as audio and video, grains can also be used for storing and transporting control data or
metadata. This is the underlying mechanism upon which UMCP is based; UMCP Events are
encapsulated within NMOS data grains. These data grains form streams of Events on the composition
timeline, making UMCP appropriate for live production as well as post-production.

In fact, UMCP uses only data grains - it does not provide any audio or video essence itself. Media
sources exist within IP Studio independent of a Composition. UMCP simply references them using
their unique identities. A good analogy is that UMCP is a cookbook – it provides recipes, but not the
ingredients or utensils. It also does not do any of the cooking for you – it simply provides
comprehensive instructions on what you should do and when you should do it in order to create the
intended end product. It is this ‘recipe’ notion that enables UMCP to support object-based
productions.

2.6.3 Working Principle

Clients ‘subscribe’ to a Composition by opening a WebSocket connection to the API server with a
specific ID. Using this communications channel, the client will receive any changes made to the
Composition in real-time in the form of UMCP Events. The client may also request their own changes
to the Composition using this channel. If their request is successful, the client will be notified by way
of new Events sent back from the API, as will all other connected clients. Upon failure, only the client
who made the request is notified. This is because no Composition changes are made and the failure
message is therefore insignificant to the other clients.

This system allows multiple users to collaborate upon a single Composition concurrently. This
consequently means that UMCP can be used for live production. For example; an edit terminal would
create and subscribe to a Composition, and then request live edits in real-time. A rendering engine
would be subscribed to the same Composition and would therefore receive these edit decisions as
Events from the API. The resulting media can be rendered out accordingly for delivery across existing

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 16 of 38

mediums. As well as receiving, validating and distributing these edit decisions as new Events, the
UMCP API simultaneously records all of the Events in the Composition database.

UMCP also offers the ability to deliver a truly object-based experience to the viewer in future. By
simply providing the Composition data direct to the end user, the Composition could be rendered out
client-side according to the users’ needs and/or the capabilities of their viewing device.

2.6.4 Example

To better illustrate the operation of UMCP, an example description can be found in Appendix A.

2.7 The Broadcast Metadata Exchange Format (BMF)

The Broadcast Metadata Exchange Format Version 2.0 (BMF 2.0)3,4 is a metadata model for the
harmonization and standardization of metadata and the exchange thereof.

It is a long-term development by the IRT in close cooperation with German public broadcasters to
provide a rich metadata vocabulary for domains of television, radio and online. The model includes
and combines both editorial and technical metadata and will form the basis of many upcoming IT-
based technologies used to exchange media and data between German public broadcasters.

While BMF is not used directly within the ORPHEUS pilot, interoperability and compatibility with this
format is important to ease the adoption of object-based audio workflows by German public
broadcasters.

IRT is currently exploring the extension of BMF by the ADM metadata set required to produce next-
generation, object-based audio. Furthermore, strategies to ensure the compatibility of metadata that
already exists in both models are explored.

This way it will be ensured that current technologies that are able to work with BMF can be easily
extended to support object-based audio based on the ADM.

2.8 Standardization

The standardization of ADM is ongoing and the project members have a great influence for new and
necessary features for object-based audio. More details about the standardization activities at ITU-R
are described in a section 2.4 of deliverable 6.2 “Intermediate Standardisation and Dissemination
Activity Report”.

The latest activity has been in ITU-R Working Parties 6B and 6C, in particular at the meeting cycle in
March 2017. The Audio Definition Model (Recommendation ITU-R BS.2076) and its companion
document of common definitions (Recommendation ITU-R BS.2094) have been enhanced and
refined, to add a clearer specification of how to support high-order Ambisonics format signals. The
draft revisions were approved by the Study Group at the end of the cycle, and will be sent to
Administrations for approval and adoption.

A further document, Report ITU-R BS.2388 “Usage Guidelines for the Audio Definition Model and
Multichannel Audio Files” was also updated at this meeting cycle, to reflect experienced gained from
use of ADM in the real world. Notably, more guidance is now being given on the handling of

3
 http://bmf.irt.de

4
 https://www.irt.de/en/activities/data-and-security/metadata/

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 17 of 38

programme preambles (count-down clocks, etc.) in recordings, and on the choice of the appropriate
size of block for dynamic objects.

Because the ADM is a crucial part of interoperability between systems, work continues in ITU-R to
standardize one or more renderers of object-based audio, with the requirement that they use ADM
metadata.

A standardized renderer is also seen as a pragmatic approach to loudness measurement (and thus
loudness normalization) of object-based audio. The study in ITU-R on loudness measurement in this
are awaits the work of the Rapporteur Group on the renderer(s).

2.9 Implementation

2.9.1 IP Studio

We are using BBC’s IP Studio as a platform for our ORPHEUS pilot, as it provides a framework and set
of tools based on open standards that we can use to implement our pilot architecture. IP Studio
makes full use of the NMOS specifications for identity, timing, discovery and registration (see Section
2.5), and implements the APIs described in those specifications.

In this section, we discuss what has been implemented for audio, metadata and storage.

2.9.2 Audio

IP Studio has built-in support for streaming audio content over ‘grains’. Each grain is an RTP packet
with additional header information that contains identity and timing information. The payload of the
packet is PCM audio. This can be in any format, but often uses 24-bit signed integers or 32-bit
floating points.

RTP receiver and transmitter plugins have been implemented for connecting to AES67 sources and
receivers. These can be dynamically reconfigured by using the NMOS Node API.

2.9.3 Metadata

Metadata can be streamed in IP Studio using ‘event grains’. These are similar to audio grains in that
each is an RTP packet with identity and timing information in the header, but instead of carrying a
payload of PCM audio, they contain JSON strings.

The UMCP API has been implemented, and can be used to route and store control metadata linked to
audio flows. A UMCP receiver plugin has also been created, which subscribes to a single UMCP
composition and transmits a stream of event grains. This can be used to generate the stream of
metadata for driving an audio renderer, or for broadcasting to the audience.

2.9.3.1 Storage

Audio and event grains can be routed to a ‘sequence store’ which saves and catalogues each grain in
a database. These can then be queried and recovered using the Media Access API, which lists the
data that is available, and can extract and package the grains that were recorded between two
timestamps.

In order to support the BW64+ADM standard, we have developed an import script that converts the
ADM metadata to a UMCP composition and ingests the data into a sequence store. We are currently
working on an export script that can be used to generate a BW64+ADM file based on a recording in
the sequence store.

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 18 of 38

2.9.4 Sequoia DAW

The Sequoia DAW has an object based approach from the beginning. This means, that real time audio
effects processing can not only be assigned to tracks, busses and the master, but also to each audio
clip individually, see Figure 1.

Figure 1: Single audio object tracks in Sequoia

Using this advantage MAGIX incorporated the following ADM features in Sequoia and made them
editable in the GUI:

- ADM Import / Export using the file menu

menu option: File -> Save ADM File

 metadata only: creates separate xml file in project directory (for testing purposes)
 audio export: full export of audio + ADM

- ADM program – corresponds to a Sequoia VIP (virtual project = multi track arrangement, project
title becomes ADM program name)

- ADM content element – corresponds to a Sequoia folder track, which may contain any number of
tracks, see Figure 2.

- ADM object – corresponds to a Sequoia audio track, which may contain any number of clips, see
Figure 3.

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 19 of 38

Figure 2: Highlighted folder tracks in Sequoia

Figure 3: Highlighted audio tracks in Sequoia

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 20 of 38

The following rules and conventions are used:

 consecutive tracks can be grouped using name formatting (<objName>_1, <objName>_2, ...)
to create a multichannel ADM object

 no nesting of folder tracks allowed
 empty tracks are not processed
 tracks outside of folder tracks are not processed
 audio block elements are created automatically according to automation curves and clip

ranges

The following workflow can be used to directly record to ADM format:

 Create 32 channel recording project (VIP)
 In the mixer setup dialog:

 choose the surround preset with the 32_0 preset
 routing -> assign tracks to surround channels

 Add B-Com plugins on surround master
 Add a folder track with the name "##RECORDING"
 Add tracks to this folder to specify the target layout (e.g. 11 tracks for 7+4 setup)
 These tracks will be used to generate the ADM information
 Finally use File -> Save ADM File -> Audio export

ADM preview using MPEG-H renderer:

For previewing the audio and interpreting the ADM metadata the MPEG-H renderer from FH is
implemented as an internal VST plug in.

In each Sequoia track an instance of the plug in collects the ADM metadata and sends them to the
master instance, which is an insert in the surround master bus.

Here all meta data is processed and creates an audio signal including all ADM effects, e.g. panning to
various surround setups such as 7.4.1, 7.1, 5.1 or 2.0.

Outlook:

Currently Sequoia can generate, read, write and edit ADM files containing audio clips, volume curves,
pan curves (x,y, z) and name tags.

For pilot 1 (summer 2017) also interactivity features such as

 - dynamic language selection

 - foreground / background balancing and

 - chapter skip / repeat

will be introduced.

Also a dedicated meta data editor will be introduced later to edit the ADM interactivity features in
the project in a user friendly way.

2.9.5 Translation of ADM to MPEG-H

Metadata is an essential part of an object-based broadcasting system and within ORPHEUS there are
two metadata-models - ADM and MPEG-H - for which a translation is needed. ADM is used in
production and contribution, whereas MPEG-H is used in distribution to the end-user devices.
Though the basic concepts of both metadata-models are similar in nature, the exact syntax and
semantic can differ widely and one model may use specific elements which cannot be expressed in
the other. One goal of ORPHEUS is therefore to define a common subset for which a direct
translation of metadata between ADM and MPEG-H is possible.

Metadata in this context means audio-related metadata, describing characteristics of audio material

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 21 of 38

(object-based, channel-based, and scene-based) as it is relevant for rendering and playback. It
includes the position and gain of audio-objects as well as the channel setup of channel-based
elements (e.g. 5.1+4H). In addition, metadata describing the structure and interactivity as relevant
for the end-user experience need to be converted. While some of the above metadata is static, other
may be dynamic, i.e. change over time (e.g. position of an object).

ADM is a very flexible and rather generic model, which uses XML as its primary representation
language. In general, it allows an arbitrary amount of objects and can use a recursive hierarchy to
structure those into groups. MPEG-H on the other hand, uses a relatively restricted bit-stream
syntax, which is defined in MPEG-H Metadata Audio Elements (MAE) and other elements within the
general configuration structure, named mpegh3daConfig(). In contrast to ADM, MPEG-H limits the
hierarchy of audio elements to a single level. Further restrictions are imposed on the flexibility of
MPEG-H when a specific Profile and Level is used. For example, the Low Complexity Profile at Level 3,
as used in ATSC 3.0, DVB and ORPHEUS, restricts the number of simultaneously rendered objects to
16. Hence, it becomes obvious that the flexibility of ADM has to be limited when the distribution via
MPEG-H is considered, as illustrated in Figure 4. This ongoing work will result in an ADM profile
definition which is compatible to the MPEG-H LC Profile.

Figure 4: Illustration of the feature-space of audio-related metadata in ADM and MPEG-H. For a direct
translation it is required to restrict the features to the common subset (shaded grey).

Some correspondences between ADM and MPEG-H metadata are listed in Table 7. The table only
shows examples of Structural Metadata but similar correspondences also exist for metadata defining
Object Rendering and Interaction Control. In addition, only the high-level syntax elements are listed
and more detailed information on the attributes and semantic definitions are avoided for simplicity.
The complete table includes close to 400 entries and builds the basis for the task of metadata
translation.

Concept ADM Metadata MPEG-H Metadata

Signals and Formats <audioChannelFormat> Signals3d()

Speaker Layout <audioPackFormat> SpeakerConfig3d()

Grouping <audioObject>, <audioContent> mae_GroupDefiniton()

Exclusive-Or Selection <audioComplementaryObjectIDRef> mae_SwitchGroupDefinition()

Pre-Defined Mixes <audioProgramme> mae_GroupPresetDefinition()

… … …

Table 7: Correspondences between ADM and MPEG-H Structural Metadata (incomplete)

As indicated in Figure 4, the values of the metadata elements have to be constrained such that they
are compatible with the Low Complexity Profile of MPEG-H at Level 3. Some of those constraints are
listed in Table 8, which forms the basis for an ADM profile definition. It is possible to capture most
constraints within an XML schema and an initial version of such a schema has been created based on
the generic XML schema for ADM. Compliance with that modified ADM schema can be used as an
indicator for an MPEG-H compliant ADM file.

ADM MPEG-H

LC Profile
Level 3

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 22 of 38

MPEG-H Metadata
(LC Profile, Level 3)

Restriction Corresponding
ADM Metadata

Nr. of groups 16 Nr. of audioObject elements
Nr. of audioPackFormat elements

Nr. of overall audioObjectIDRef
references per audioContent
Nr. of audioPackFormatIDRef references
per audioObject
Nr. of audioPackFormatIDRef references
per audioStreamFormat

Nr. of presets 8 Nr. of audioProgramme elements

Nr. of preset conditions (per preset) 16 Nr. of audioContentIDRef per
audioProgramme element

Nr. of switch groups 8 Nr. of audioObject elements using
audioComplementaryObjectIDRef

mae_bsDescriptionDataLength 256 length of descriptors

sampling rate {48, 44.1,
32, 29.4, 24,
22.05, 16,
14.7} [kHz]

sampleRate attribute in audioTrackUID
element

Nr. of loudspeakers in ref. layout 12 Restriction of specific
audioPackFormatIDs for
type="directSpeakers"

HOA order 6 order in audioBlock

(Nr. of objects without divergence)
+ 3·(number of objects with
divergence > 0)

 16 (Nr. of elements with objectDivergence
== 0) + 3· (Nr. of objectDivergence
elements with value > 0)

Nr. of objects with divergence and
spread

=0 if width, height or depth are bigger than
zero, then objectDivergence has to be
zero
width, height, depth of an object have to
be zero if objectDivergence is bigger
than zero

Temporal resolution of dynamic
metadata for 1024 samples/frame

>256
[samples]

Duration of audioBlockFormat elements

… … …

Table 8: Restrictions derived from MPEG-H Low Complexity Profile, Level 3 (preliminary)

Though the metadata-models of ADM and MPEG-H are designed for a very high degree of
compatibility, some caution is needed to translate from ADM to MPEG-H. In the following, we list
some of the issues that need to be addressed in future work. Most can be resolved by restricting the
ADM feature-space as outlined above.

- Coordinate Systems: ADM files with Cartesian coordinates are not directly translatable but
need a coordinate transform.

- Zone Exclusion / Excluded Sectors: Resulting from the coordinate system transform, there
might be minor incompatibilities with excluded sectors/zones, because ADM uses a cuboid

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 23 of 38

definition of zones and MPEG-H uses an angular definition.

- Interpolation Length: Interpolation length for dynamic metadata cannot be signalled in
MPEG-H. The frame length should be aligned to simplify translation.

- Signal Types: Matrixed channels and pre-binauralized sound cannot be signalled explicitly in
MPEG-H.

- Speaker Distance: The ‘intended’ loudspeaker distance (for the reference/target speaker
positions of channel-based elements) cannot be signalled in MPEG-H

- Screen Distance: The Reference Screen Distance cannot be signalled in MPEG-H

- Recursion: There’s no possibility to describe recursively nested groups in MPEG-H

Status of Implementation

Because MPEG-H metadata is defined as a binary format with bit-fields of various lengths, it is
difficult to read and modify by humans and 3rd party software. Therefore, FHG has defined a
corresponding XML-based format as an intermediate representation. This proprietary XML-format is
also used to configure the software components from FHG such as the MPEG-H Encoder and the
MPEG-H Production Library. Though this XML-format is still in development and subject to change, it
is used as the basis for the work on metadata-translation. In other words, it is our initial goal to
translate one XML-file containing MPEG-H metadata into another XML-file containing ADM
metadata. The software framework for reading and writing both XML-formats into corresponding
memory structures is available and work on the actual translation has started. As a reference for
correct operation, some corresponding pairs of XML-files have been generated manually. Ultimately,
this activity should result in a C-Code library which can be used in various components of the
OPRPHEUS architecture.

2.10 Archiving

Archiving, in the sense of long-term storage of object-based audio content, is a crucial process within
the broadcasting chain. Especially archives hosted by broadcasters may contain audio signals dating
back decades, and provide content for all current and future distribution channels, but also serve as a
basis for new productions. It is thus important that a format for archiving guarantees that content
within the archive can be accessed and used without loss of information nor quality in the future.

As outlined on Deliverable 4.1, the formats for production and archiving should therefore fulfil
certain requirements. The most important ones are

 The format should be publicly and openly documented.

 The format should be non-proprietary and the format should not depend on proprietary
equipment.

 The format should not depend on a specific operating system or type of equipment.

 The format should be an uncompressed format.

 An archive file should include technical metadata

 The format should support sampling rates up to at least 48kHz, better up to 96kHz and a bit-
depth of at least 24bit.

Given these requirements and based on an assessment of potential formats, the consortium has
chosen the BW64 format as a container format (section 2.1), containing both ADM metadata (section
2.2) and PCM encoded, uncompressed audio samples (audio essence), to be used within the
ORPHEUS project.

The BW64 format is specified in ITU-R BS.2088 [2], which is available publicly and free of charge. It
allows to directly store the technical metadata along with the uncompressed audio data. As it is
backwards compatible with the widely-used RIFF/WAVE format – if the file size does not exceed 4 Gb

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 24 of 38

– no special equipment is required to process the audio data within BW64 files. Finally, having native
support to carry ADM metadata to represent object-based audio makes it a natural choice for
adoption within the ORPHEUS project.

But, as one of the objectives of ORPHEUS is not only to provide a working end-to-end chain, but also
investigate means to ease the adaption of object-based broadcasting for existing workflows, the
consortium takes care of backward compatibility and interoperability.

Considering broadcasting archives, it is often not possible or feasible to start from scratch. Instead,
new technologies must be integrated into an existing system with existing content. It is obvious that
acceptance of an object-based audio workflow will be higher if the integration barrier with existing
archives, both software and metadata, is as low as possible.

While investigations on this topic are still ongoing, at least two strategies can be identified. The first
is to ensure convertibility and consistency between existing metadata models and the technical
metadata required for object-based broadcasting. The work on compatibility with BMF as described
in section 2.7 is one example of this approach. The second strategy is to consider BW64, the ADM or
both as an interface specification for the archive. This approach has been taken with the
import/export functionality of the stream-based storage of the IP studio as described in Deliverable
3.4 (“Implementation and documentation of a live object-based production environment”).

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 25 of 38

3 Provision Formats for Distribution to the End-user

For the distribution of object-based audio from the broadcaster to the end-user, the ORPHEUS
project has selected two provision formats which are used in parallel. Both formats focus on the
Internet as the most flexible transmission network and use MPEG-DASH as the underlying transport
protocol.

Distribution to HTML5 Browsers: On the one hand, AAC and ADM are used to stream object-based
audio to HTML5 browsers. This path allows distribution to a large audience as HTML5 browsers are
widely available and content can therefore be consumed immediately. Because AAC per se is not an
object-based audio codec, the additional functionality is implemented in Java Script and uses the
WebAudio API for rendering in the browser.

Distribution to MPEG-H Clients: The second path is based on MPEG-H as a state of the art Next
Generation Audio (NGA) codec. Because MPEG-H was designed from start with object-based audio in
mind, it includes rendering and provides a well-defined audio quality and APIs, which also cover user
interaction (UI). In addition, it is more bit-rate efficient and less complex than the browser-based
solution. Within the ORPHEUS project, two clients are developed to verify MPEG-H as a universal
delivery format for a diverse range of devices: An iOS-app running on an iPhone and a high-end AVR
for the home.

In the following Section 3.1 we first provide some basic information on MPEG-DASH as this streaming
format is used for both distribution paths in common. More detailed information on the specifics of
the HTML5- and MPEG-H-based distribution path is then provided in Section 3.2 and 3.3 respectively.

3.1 MPEG-DASH

“Dynamic Adaptive Streaming over HTTP (DASH), also known as DASH, is an adaptive bitrate
streaming technique that enables high quality streaming of media content over the Internet
delivered from conventional HTTP web servers. DASH is the first adaptive bitrate streaming solution
that is an international standard. It was standardized by MPEG and is therefore called more precisely
MPEG-DASH [7]. It already has significant market adoption and has a good chance of becoming the
universal solution for media delivery on the Internet - outdating similar but more proprietary
solutions like Smooth Streaming by Microsoft, or HDS by Adobe.

MPEG-DASH works by breaking the content into a sequence of small Segments, each segment
containing a short interval of playback time, typically 2-10 seconds. As a container format for the raw
audio bitstream the MPEG-4 File Format (MP4) [8] is used and each temporal segment then
corresponds to an MP4 fragment (fMP4). In addition to the temporal segmentation, the content is
made available at a variety of different Representations, i.e., alternative encodings of the same
content at different bit rates. Based on the current network conditions, the DASH-client can then
automatically select the appropriate Representation for download and playback. More specifically,
the client selects the next segment with the highest possible bitrate that can be downloaded in time
for play back without causing stalls or re-buffering events in the playback. Thus, an MPEG-DASH
client can seamlessly adapt to changing network conditions, and provide high quality play back with
fewer stalls or re-buffering events.

An essential element of the MPEG-DASH standard is the Media Presentation Description (MPD),
which is an XML file describing metadata about the encoding and location of the Segments. It is need
by the DASH-client to initialize the streaming session and is often referred to as the “index file” or
“playlist”. Especially for the use case of a live service it is recommended to address Segments using
template-generated URLs. Such a SegmentTemplate avoids the need to update the MPD in regular
intervals and is also used for ORPHEUS.

MPEG-DASH uses HTTP/TCP as the transport protocol and can therefore use existing infrastructure

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 26 of 38

which is widely available for content delivery over the World Wide Web. In particular, conventional
HTTP severs can be used to stream media and Content Distribution Networks (CDN) can be used to
scale the service to many users and geographical regions.

DASH is codec-agnostic which means it can stream content encoded with any codec like H.264, AAC
or MPEG-H 3D Audio. However, each codec may need additional constraints and agreements in order
to achieve true interoperability. Therefore the DASH Industry Forum (DASH-IF) is working on
implementation guidelines and defines interoperability points for MPEG-DASH [9]. The guidelines
and clarifications of DASH-IF shall also apply to ORPHEUS, in particular with respect to MPEG-H 3D
Audio.

3.2 AAC + ADM Streaming

In order to deliver multi-object/channel audio to the browser in a form which is compatible with the
majority of browsers and platforms we use an approach based on the MPEG-DASH standard. Audio
and metadata are presented to the client as DASH segments, however unlike standard DASH play
back in which a single audio representation is played back at a time we consume all of the audio
adaptation sets simultaneously and schedule them for playback. This allows us to distribute higher
channel counts than can be handled by the decoders bundled with popular browsers.

3.2.1 Encoding

Audio and metadata is captured in ORPHEUS using the IP Studio system, which handles hardware and
network IO, timing and input alignment. Multiple audio inputs must be matrixed into groups of 5
channel streams. This must be done as only 5 channels groups can reliably decoded by most modern
browsers. IP Studio can encode these streams in real time to multiple bandwidth AAC
representations which are then passed to an IP Studio sequence store.

Figure 5: Simple IP Studio pipeline generating 2 stereo audio streams and a single metadata stream

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 27 of 38

Figure 6: NMOS Node API showing available live “senders” from which media can be consumed.

3.2.2 Segmentation

The sequence store generates a MPEG-DASH manifest and timestamped segments representing each
5 channel audio stream. These streams are time aligned so can be referenced independently.

Sequence stores also provide segmentation for events resulting in timestamped JSON segments
representing the metadata to be applied to each segment of audio.

3.2.3 Transfer to public domain

In order to transfer the media to the public audience for consumption, a process has been developed
which consumes a collection of IP Studio manifests (1 per audio or metadata stream), and pushes
segments to Amazon Web Services (AWS) S3 storage service.

Amazon CloudFront is used as a CDN to make these media and metadata segments available in an
efficient manner globally to audiences. Any storage and CDN service can be used, however we chose
to use Amazon as the BBC has an existing contract for those services.

3.2.4 Media reference

To allow the audience to access the media, an aggregation service is provided. When queried via a
REST API this returns a manifest which contains separate adaptation sets for each media stream
which makes up the broadcast along with adaptation sets for the metadata segments.

The service uses the timing provided on the ORPHEUS IP Studio node to provide a manifest which
begins as close to the live edge as possible to provide users with a live listening experience as they
would expect from a radio broadcast.

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 28 of 38

Figure 7: Aggregate Manifest generated from available media which is not located on AWS.

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 29 of 38

3.2.5 Playback and rendering

In order to playback the media referenced by the aggregation service we use a JavaScript library title
bbcat-js (BBC Audio Toolkit – Javascript).

This library consumes the aggregated manifest and begins downloading segments into a buffer for all
provided adaptations. These segments are decoded and queues as Web Audio API buffer sources for
sample accurate playback. Transport controls such as pause, skip forward and backwards are also
implemented.

In addition to the media playback any metadata segments that are available are handled in much the
same way, however rather than being decoded as audio the JSON is parsed and rendering events are
added to an internal queue. As the play-head progresses these events are sent to any number of
available renderers in the library.

3.3 MPEG-H Streaming

The second distribution path is based on MPEG-H 3D Audio as a state of the art Next Generation
Audio (NGA) codec with advanced capabilities with respect to immersion, personalization and
universal delivery. For the distribution to the end-user two components have to be addressed: First,
the MPEG-H 3D Audio codec as a generic solution for object-based 3D audio compression, second,
the transport of MPEG-H over DASH as a universal solution for media delivery over the Internet.

3.3.1 MPEG-H 3D Audio

MPEG-H 3D Audio, specified as ISO/IEC 23008-3 (MPEG-H Part 3) [10], is an audio coding standard
developed by the ISO/IEC Moving Picture Experts Group (MPEG) which was designed to meet the
requirements of so called Next Generation Audio (NGA). It is adopted in broadcast application
standards such as ATSC 3.0 and DVB and has been selected for terrestrial UHDTV services in Korea for
which test streams are on air since April 2017.

The codec offers 3D sound to increase the realism and immersion of the user experience, and offers
audio objects that enable interactivity or personalization by listeners. Immersive sound may be
encoded using channel-based signals for typical loudspeaker setups or scene-based components
encoded in Higher Order Ambisonics (HOA) in combination with static or dynamic audio objects.
Interactivity can be enabled through broadcaster-authored preset mixes or through user control of
object gains and positions. Improved loudness and Dynamic Range Control (DRC) allows tailoring the
sound for best reproduction on a variety of consumer devices and listening environments.

The rendering of audio objects on arbitrary trajectories and the format conversion of loudspeaker
configurations is an integral part of MPEG-H 3D Audio standard, which provides end-to-end control
of the resulting audio quality. In addition, a binaural rendering module is included in the decoder,
which can convey the spatial impression of immersive audio productions on headphones. This is of
increased importance as media consumption is moving further towards mobile devices and personal
audio with headphones as predominant form of playback.

The definition of audio metadata in MPEG-H 3D audio allows for personalized playback options, such
as increasing or decreasing the level of dialog relative to the other audio content. With the metadata
definition, MPEG-H 3D Audio also supports several use-cases for audio interactivity and object-based
audio, such as changing the position of sound events, changing the language of a program, enabling
of additional dialog tracks, choosing between content versions and automatic screen-related audio
scene scaling. An overview of MPEG-H audio metadata is provided in [11]. For further information we
also refer to [12] which is a comprehensive summary of the MPEG-H 3D Audio codec and its
application in a TV broadcast environment.

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 30 of 38

Profile Level 1 2 3 4 5

Maximum sampling rate [kHz] 48 48 48 48 96

Maximum core codec channels in bit stream 10 18 32 56 56

Maximum simultaneously decoded core codec channels 5 9 16 28 28

Maximum loudspeaker outputs 2 8 12 24 24

Example loudspeaker configuration 2.0 7.1 7.1+4H 22.2 22.2

Maximum decoded objects 5 9 16 28 28

Table 9: Levels for low complexity profile of MPEG-H Audio [12]

The MPEG-H 3D Audio standard defines a complete NGA codec with many options and coding tools.
In practice it is therefore required to define a subset for a specific application and complexity
constraint. ORPHEUS follows the Profile and Level which has been defined in ATSC 3.0 and DVB,
namely the Low Complexity Profile at Level 3 [13], see Table 9. Level 3 limits the codec to 32 core
codec channels from which only 16 can be decoded simultaneously. For example, this allows
decoding and rendering of 16 simultaneous audio objects or 3D speaker layouts such as 7.1+4H with
3 additional objects. Recommended core bitrates for the different channel configuration are listed in
Table 10. The ATSC 3.0 application standard also includes further definitions and clarifications on the
usage of MPEG-H, which shall also apply to ORPHEUS.

Channel Configuration Bitrate [kbs]

2.0 Stereo 96

5.1 Multi-channel surround 192

7.1+4H Immersive Audio with 4 height speakers 384

22.2 Immersive audio 768

Table 10: Recommended core bitrates for excellent audio quality for broadcast applications [12]

3.3.2 MPEG-H over DASH

Because MPEG-H is primarily a compression format with the addition of 3D-rendering capability, it
can be used like any other compression format together with codec-agnostic streaming formats such
as DASH. MPEG-H is therefore defined as an optional audio codec in the DASH-IF Interoperability
Guidelines since version 3.2 [9]. As ORPHEUS follows the MPEG-H profile and level definition from
ATSC 3.0 it is consequent to also follow the Guidelines which ATSC and DASH-IF have defined jointly
for the transport over DASH [14], in particular sections “5.4. Audio” and “5.4.4.3. MPEG-H Audio
specific details” shall apply to ORPHEUS. In the following a high-level description of the relevant
issues at the interface between MPEG-H and DASH is provided. For the detailed technical
specification, we refer to the above mentioned sections.

All required metadata for decoding and rendering MPEG-H bit-streams is defined in the MPEG-H
specification and is embedded in the MPEG-H Audio Stream (MHAS) in binary form. Therefore, the
definition and encoding of all relevant metadata as well as its decoding and rendering behaviour is
well defined when using MPEG-H as a codec format for streaming. However, the mapping between
the metadata in production (e.g. ADM) and MPEG-H has to be assured.

In addition, MPEG-H offers the following features that are relevant for streaming: First, it supports
seamless bit-rate switching through Instantaneous Playout Frames (IPF) which simplifies tune-in and
adaptive streaming in DASH. MPEG-H also supports configuration changes and splicing on the bit-
stream level, which can be important for use cases such as insertion of advertisements (“ad-
insertion”). In addition, objects can be transmitted as independent streams and merged at the client,
e.g. for hybrid delivery of an alternate language. Finally, the flexible rendering and format conversion
of MPEG-H allows decoding the same bit-stream for e.g. a 5.1 surround speaker setup, stereo

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 31 of 38

speaker setup, or binaural headphones. Hence, a single bit-stream is stored on the server covering
multiple playback scenarios and therefore saving storage space and signalling complexity.

When initializing the streaming session it has to be considered that the overall audio scene may
contain multiple channel beds and objects which can only be combined in certain ways. For example,
an ambience atmosphere with 5.1 channels has to be combined with the dialog in either German or
English language, and in addition an optional sound effect can be added. Though all those
dependencies are well described in the MPEG-H Audio Scene Information (ASI) data structure, some
of this information is also needed on the session initialization level, i.e. in the Media Presentation
Description (MPD) of DASH. This allows, for example, that a DASH-client only fetches the English
dialog track and therefore saves transmission bit rate. The mapping of audio scene information and
dependencies onto the MPD has been defined in MPEG and DASH-IF under the term Multi-Stream
Delivery and introduces the concept of Bundles and PartialAdaptationSets within the MPD syntax.
Within ORPHEUS it was decided to start initially with a simple DASH scenario using a single MPEG-H
stream and leave more advanced multi-stream scenarios for further study.

We conclude this section with an example MPD for the most basic use case for streaming MPEG-H 3D
Audio over DASH in a live scenario. The MPD is shown in Figure 8 and corresponds to a single MPEG-
H stream encoded at a single bitrate (Representation) of 640 kbit/s. The parameter
codecs=”mhm1.0x0D” signals MPEG-H when using the Low Complexity Profile at Level 3. The
SegmentTemplate is used to address the segments in the live stream as a template-generated URL.
This MPD is part of the test data which is provided to ORPHEUS partners within the MPEG-H Decoder
SDK.

Figure 8: Example MPD for streaming MPEG-H over DASH

3.4 Implementation

Considering the distribution path to HTML5 browsers, the implementation approach and status is
already documented in Section 3.2 and mainly under the responsibility of the BBC.

Considering the second distribution path based on the MPEG-H 3D Audio codec, Fraunhofer IIS has
the role of providing the core software components and know-how while several other partners act
as software integrators. More specifically, Fraunhofer IIS has provided three Software Development
Kits (SDK) to ORPHEUS partners, namely

 MPEG-H Encoder SDK (BBC)

 MPEG-H Decoder SDK (BBC, ECANDY, TRINNOV)

 MPEG-H Production SDK (BBC, MAGIX, IRT)

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 32 of 38

While the scope of the Encoder- and Decoder-SDK should be obvious, the Production-SDK includes
various tools for facilitating the production workflow. This includes the generation of MPEG-H
metadata in the form of the Control Track (static and dynamic metadata encoded into a PCM audio
channel using a modem) or an XML file (using a proprietary format aligned with the semantics of
Metadata Audio Elements in MPEG-H, in particular mae_AudioSceneInfo()). In addition, the
Production-Lib also includes 3D-rendering functionality and loudness measurement.

Each SDK consists of a core library for the intended target platform and additional material for
supporting the integration process, including documentation, source code for example applications
and test data. In addition, Fraunhofer IIS also developed and distributed additional “glue code” to
facilitate or simplify the integration process. This includes an iOS-app which illustrates the User
Interaction API of the MPEG-H decoder (relevant for ECANDY) and a DASH-receiver plugin based on
the GStreamer media framework (relevant for TRINNOV).

Different end-user devices were developed to receive object-based audio content based on MPEG-H
3D Audio over MPEG-DASH. The details of these implementations are explained in D5.2
“Implementation and documentation of intermediate version of object-based renderers and user
interfaces” and listed here for reference:

a) DASH client for MP4 streams with MPEG-H decoder in Chromium browser, by FHG (in
chapter 3 of D5.2)

b) DASH client for MP4 streams with MPEG-H decoder in high-end AV receiver, by TRINNOV (in
chapter 4 of D5.2)

c) DASH client for MP4 streams with MPEG-H decoder in iOS mobile application, by ECANDY (in
chapter 5 of D5.2)

While the MPEG-H enabled Chromium browser was excluded as a reception device for the ORPHEUS
pilots because of conflicts with the Open Source Software (OSS) licences which make a re-distribution
to end users problematic, the integration for the other two reception devices is progressing well and
initial versions are expected for the Pilot-1 in June 2017.

On the sender side, the BBC is planning to integrate the MPEG-H Encoder into its IP-Studio platform.
Though this integration process has started, it is unclear whether it will be ready for deployment
during the Pilot-1 timeframe. Therefore, ORPHEUS has decided to provide content for a “pseudo live”
transmission as a backup plan. This content is pre-produced offline and pre-encoded with MPEG-H
but distributed to the receiver devices “as if being live”. Hence, the protocol interfaces (H over DASH)
as well as the user experience is identical to a live trial and therefore suitable for testing and user
evaluation.

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 33 of 38

4 Conclusions

This deliverable lists the formats selected for ORPHEUS and describes the interim status of the
implementation of these formats for representation, archiving and provision of object-based audio.
On the production side most of the formats are used, like BW64, ADM, NMOS and UMCP. For the
provision or distribution MPEG-H and AAC + ADM metadata streamed over MPEG-DASH are used.
The implementation and usage of the different formats in ORPHEUS and their capabilities are
explained.

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 34 of 38

References

[1] ITU-R Recommendation BS.1352-3, File Format for the Exchange of Audio Programme
Materials with Metadata on Information Technology Media. 2007, Intern. Telecom Union,
Geneva, Switzerland. https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1352-3-
200712-I!!PDF-E.pdf.

[2] ITU-R BS.2088-0, Long-form File Format for the International Exchange of Audio Programme
Materials with Metadata. 2015, Intern. Telecom Union, Geneva, Switzerland.
https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.2088-0-201510-I!!PDF-E.pdf.

[3] ITU-R BS.2076-0, Audio Definition Model. 2015, Intern. Telecom Union, Geneva, Switzerland.
https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.2076-0-201506-I!!PDF-E.pdf.

[4] ITU-R BS.2094-0, Common Definitions for the Audio Definition Model. 2016, Intern. Telecom
Union, Geneva, Switzerland. https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.2094-0-
201604-I!!PDF-E.pdf.

[5] EBU Tech 3293, EBU Core Metadata set (EBUCore). 2016, European Broadcasting Union,
Geneva, Switzerland. https://tech.ebu.ch/docs/tech/tech3293.pdf.

[6] EBU Tech 3351, EBU Class Conceptual Data Model (CCDM). 2016, European Broadcasting
Union, Geneva, Switzerland. https://tech.ebu.ch/docs/tech/tech3351.pdf.

[7] ISO/IEC CD23009, Information technology - Dynamic adaptive streaming over HTTP (DASH) -
Part 1: Media presentation description and segment formats. 2014.

[8] ISO/IEC Int. Std. 14496-14:2010, Coding of Audio-Visual Objects - Part 14: The MP4 File
Format. 2010.

[9] DASH Industry Forum, Guidelines for Implementation: DASH-IF Interoperability Points,
Version 4.0. 2016. http://dashif.org/wp-content/uploads/2016/12/DASH-IF-IOP-v4.0-
clean.pdf.

[10] MPEG-H ISO/IEC 23008-3 Information technology — High efficiency coding and media
delivery in heterogeneous environments — Part 3: 3D audio. 2016, ISO/IEC JTC1/SC29/WG11
Coding of Moving Pictures and Audio.

[11] Füg, S., et al., Design, Coding and Processing of Metadata for Object-Based Interactive Audio,
in 137th AES Convention. 2014: Los Angeles, USA.

[12] Bleidt, R.L., et al., Development of the MPEG-H TV Audio System for ATSC 3.0. IEEE
Transactions on Broadcasting, 2017. 63(1), DOI: https://doi.org/10.1109/TBC.2017.2661258.

[13] ATSC, A/342 Part 3:2017, MPEG-H System. 2017. http://atsc.org/wp-
content/uploads/2017/03/A342-3-2017-MPEG-H-System-1.pdf.

[14] DASH Industry Forum, Guidelines for Implementation: DASH-IF Interoperability Point for
ATSC 3.0, Version 1.0. 2016. http://dashif.org/wp-content/uploads/2017/02/DASH-IF-IOP-
for-ATSC3-0-v1.0.pdf.

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 35 of 38

Appendix A Example UMCP composition

The following example details a simple working UMCP Composition in UMCP v0.2. Two media
sources are played and a mix processor switches between them.

In this example, a total of four Sequences are created; there are two Media Sequences that feed a
‘mixer’ Processor Sequence, which then feeds the Output Sequence. Note that UMCP is simply a
collection of Events, and therefore a Sequence does not exist if there are no Events referencing it. To
request the UMCP API to create a new Sequence, a ‘default’ Event must be created. This is acts as a
placeholder for the Sequence by referencing the Sequence by ID. Additionally, it can provide
initialisation instructions for the Sequence (such as default parameter values.)

A simple GET request to the API for a Composition will return a dump of the Composition as
structured, hierarchical JSON. At the heart of this object are the UMCP Events that provide the
instructions to produce the resultant media from the Composition. In this brief summary, some of
the key elements of UMCP objects will be discussed.

 "999f381e-0389-4ea5-bd11-873254deaed2": {
 "title": "Audio Mix Composition",
 "id": "999f381e-0389-4ea5-bd11-873254deaed2",
 "sequences": {
 "674abcde-20d9-41cc-5573-000000000001": {
 "title": "Movie Trailer",
 "default_event": {...},
 "events": {...},
 "id": "674abcde-20d9-41cc-5573-000000000001"
 },
 "674abcde-20d9-41cc-5573-000000000002": {
 "title": "Big Buck Bunny",
 "default_event": {...},
 "events": {...},
 "id": "674abcde-20d9-41cc-5573-000000000002"
 },
 "674abcde-20d9-41cc-5573-00000000000a": {
 "title": "Audio Mixer",
 "default_event": {...},
 "events": {...},
 "id": "674abcde-20d9-41cc-5573-00000000000a"
 },
 "674abcde-20d9-41cc-5573-000000000000": {
 "title": "Audio Output",
 "default_event": {...},
 "events": {…},
 "id": "674abcde-20d9-41cc-5573-000000000000"
 }
 }
 }

The top-most property in this structure provides the Composition ID. The value is an object
containing a title property for the Composition, the ID, and a Sequences property. The Sequences
property provides the IDs of all of the Sequences within the Composition, with a corresponding
object. Within each Sequence object are the title and ID for the Sequence, and the Events within the
sequence (including the aforementioned default event.) Note that the ‘Audio Output’ Sequence has
no Events other than the default event. This is because Output Sequences do not perform any
processing themselves. They simply signpost the output point of the processing pipelines. In some
cases the Output Sequence may have Events, such as when connections are made to or from the
Sequence over time. However, in this example, the connections are defined in the default event.

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 36 of 38

When defining a connection, the Event always occurs on the destination Sequence, not the source
Sequence. Observing the default event of the Output Sequence, a connection is made from the Audio
Mixer Sequence using its unique ID.

"default_event": {
 "event_payload": {
 "topic": "efe15658-fffa-4084-973a-5ddea35f1220",
 "type": "urn:x-ipstudio:format:event.composition.sequence.processors.audio.output",
 "data": [
 {
 "path": "input/0",
 "post": {
 "port": 0,
 "entity": "674abcde-20d9-41cc-5573-00000000000a"
 }
 }
]
 },
 "grain_type": "event",
 "origin_timestamp": "0:0",
 "source_id": "674abcde-20d9-41cc-5573-000000000000",
 "sync_timestamp": "1481040193:930000000",
 "creation_timestamp": "1481040193:930000000"
}

Similarly, the Audio Mixer Sequence connects from the two Media Sequences. It references input/0
and input/1 in the path properties to feed the Sequences in to separate mixer inputs. Ultimately, the
following processing graph is produced.

Media Sequence 1

Media Sequence 2

Processor Sequence
(Mixer)

Output Sequence

The Event also includes some other important properties. The topic property provides a unique ID for
this specific Event. The type property provides a URN describing the purpose of the Sequence. There
is also an origin timestamp denoting the time at which this Event should be enacted on the
Composition timeline. Since this is a default event, origin timestamp is irrelevant here. It should be
noted however that all timestamps follow NMOS standards; that is to split them in to
second:nanosecond pairs relative to the epoch.

The Audio Mixer Sequence provides a good example of how processor parameters are varied over
time. The following data is take from the events property of the Sequence. The mix parameter is
changed from 0 (all input 0) to 1 (all input 1) to 0.5 (mix of both).

"events": {
 "efe15658-fffa-4084-973a-5ddea35f1221": {
 "event_payload": {
 "topic": "efe15658-fffa-4084-973a-5ddea35f1221",
 "type": "urn:x-ipstudio:format:event.composition.sequence.processors.audio.mixer",
 "data": [
 {
 "path": "mix",
 "post": 0
 }
]

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 37 of 38

 },
 "grain_type": "event",
 "origin_timestamp": "1481000000:0",
 "source_id": "674abcde-20d9-41cc-5573-00000000000a",
 "sync_timestamp": "1481040193:930000000",
 "creation_timestamp": "1481040193:930000000"
 },
 "efe15658-fffa-4084-973a-5ddea35f1222": {
 "event_payload": {
 "topic": "efe15658-fffa-4084-973a-5ddea35f1222",
 "type": "urn:x-ipstudio:format:event.composition.sequence.processors.audio.mixer",
 "data": [
 {
 "path": "mix",
 "post": 1
 }
]
 },
 "grain_type": "event",
 "origin_timestamp": "1481000004:0",
 "source_id": "674abcde-20d9-41cc-5573-00000000000a",
 "sync_timestamp": "1481040193:930000000",
 "creation_timestamp": "1481040193:930000000"
 },
 "efe15658-fffa-4084-973a-5ddea35f1223": {
 "event_payload": {
 "topic": "efe15658-fffa-4084-973a-5ddea35f1223",
 "type": "urn:x-ipstudio:format:event.composition.sequence.processors.audio.mixer",
 "data": [
 {
 "path": "mix",
 "post": 0.5
 }
]
 },
 "grain_type": "event",
 "origin_timestamp": "1481000008:0",
 "source_id": "674abcde-20d9-41cc-5573-00000000000a",
 "sync_timestamp": "1481040193:930000000",
 "creation_timestamp": "1481040193:930000000"
 }
}

Finally, the Media Sequences provide an example of how Events are used to play media through a
processing pipeline.

"events": {
 "efe15658-fffa-4084-973a-5ddea35f1241": {
 "event_payload": {
 "topic": "efe15658-fffa-4084-973a-5ddea35f1241",
 "type": "urn:x-ipstudio:format:event.composition.sequence.media.audio",
 "data": [
 {
 "path": "source_id",
 "post": "c39728ac-642f-418b-80dc-72762b2eceac"
 },
 {
 "path": "start_time",
 "post": "978307231:957333333"
 }
]
 },
 "grain_type": "event",
 "origin_timestamp": "1481000000:0",
 "source_id": "674abcde-20d9-41cc-5573-000000000002",

D4.2: Interim report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 38 of 38

 "sync_timestamp": "1481040193:930000000",
 "creation_timestamp": "1481040193:930000000"
 },
 "efe15658-fffa-4084-973a-5ddea35f1242": {
 "event_payload": {
 "topic": "efe15658-fffa-4084-973a-5ddea35f1242",
 "type": "urn:x-ipstudio:format:event.composition.sequence.media.audio",
 "data": [
 {
 "path": "source_id",
 "post": null
 }
]
 },
 "grain_type": "event",
 "origin_timestamp": "1481000015:0",
 "source_id": "674abcde-20d9-41cc-5573-000000000002",
 "sync_timestamp": "1481040193:930000000",
 "creation_timestamp": "1481040193:930000000"
 }
}

These Events instruct the media source with ID "c39728ac-642f-418b-80dc-72762b2eceac" to
playback from timestamp "978307231:957333333". This media will be accessible via the IP Studio
Media Access API. It could be an audio file, or it may in fact be the output of another UMCP
Composition. Fifteen seconds later, playback is stopped by setting the source ID to null.

