
Grant Agreement No.: 687645
Research and Innovation action
Call Topic: H2020 ICT-19-2015

Object-based broadcasting – for European leadership in next
generation audio experiences

D3.6: Implementation and documentation of object-based editing
and mixing

Version: V1.0

Deliverable type R (Document, report)

Dissemination level PU (Public)

Due date 30/11/2017

Submission date 30/11/2017

Lead editor Tilman Herberger (MAGIX)

Authors MAGIX: Tilman Herberger, Dr. Volker Mühle, Marius Vopel

BBC: Matt Firth

IRCAM: Olivier Warusfel

Reviewers Andreas Silzle (FHG), Chris Baume (BBC), Werner Bleisteiner (BR)

Work package, Task WP3, T3.2

Keywords audio production, audio mixing, object-based broadcast

Abstract

This document describes object-based production tools, which were created as part of WP3. It offers
details on the challenges and results of implementing features that are required for editing and
mixing in an object-based production environment.

[End of abstract]

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 2 of 47

Document revision history

Version Date Description of change List of contributor(s)

v0.1 18/10/2017 Table of contents, document

structure

Tilman Herberger (MAGIX)

V0.2 20/10/2017 Topics filled from developers,

Executive summary included

Dr. Mühle, M. Vopel

V0.3 27/10/2017 Filled first chapters T. Herberger

V0.4 14/11/2017 Drawings and screens added T. Herberger

V0.5 17/11/2017 All MAGIX screens inserted T. Herberger

V0.6 18/11/2017 BBC content inserted T. Herberger / Matt Firth

V0.7 20/11/2017 Additions and corrections M. Vopel

V0.8 26/11/2017 IRCAM contribution inserted O. Warusfel, T. Herberger

V0.9 27/11/2017 Further additions and corrections M. Vopel

V0.94 28/11/2017 Addressed internal review feedback T. Herberger, M. Vopel

V1.0 30/11/2017 Final summary edited T. Herberger, M. Vopel

Disclaimer

This report contains material which is the copyright of certain ORPHEUS Consortium Parties and may
not be reproduced or copied without permission.

All ORPHEUS Consortium Parties have agreed to publication of this report, the content of which is
licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License1.

Neither the ORPHEUS Consortium Parties nor the European Commission warrant that the
information contained in the Deliverable is capable of use, or that use of the information is free from
risk, and accept no liability for loss or damage suffered by any person using the information.

© 2015 - 2018 ORPHEUS Consortium Parties

1
 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 3 of 47

Executive Summary

This document describes the challenges which had to be solved to realize an object based workflow
for editing and mixing audio – in a pre-production situation as well as in a live mixing environment.

The DAW Sequoia had to support new object-based features and workflows as proposed in the
ORPHEUS project.

The most important enhancement is the support for BW64 files with ADM metadata. Basic import,
export and editing functionality have been implemented. Various improvements to the internal
surround and mixing engine of Sequoia were made in order to allow 3D panning, a new recording
workflow and an integrated rendering solution.

In order to create live object-based audio productions in the IP Studio software, it was necessary to
design and develop a new audio production interface since no commercial product exists to provide
this functionality at the time of writing. This tool would allow the operator to design and control his
or her object-based soundscape, and would generate the necessary representative metadata to
recreate the experience on client devices.

The ADMix tool suite has been already introduced in deliverable D3.5. Originally developed for
experimenting with incorporating reverb into an object-based production workflow, the ADMix tool
suite can be used in a more general context to create, load and play back audio files containing ADM
metadata. In its current state, only a subset of the ADM specifications is supported, but many
common use cases are already covered.

While there is still room for future improvements, the currently implemented solutions can already
be used for the required workflows in object-based production.

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 4 of 47

Table of Contents

Executive Summary .. 3

Table of Contents ... 4

List of Figures ... 6

Abbreviations ... 7

1 Introduction ... 8

2 Extensions to the DAW Sequoia for object-based editing and mixing 9

2.1 Mapping the ADM to the project structure of Sequoia ..9

2.2 Automation of object parameters ... 11

2.3 Introducing 3D panning ... 12

2.4 Recording to ADM .. 13

2.5 Integration of a rendering solution ... 14

2.6 Further ADM metadata editing ... 16

2.7 Introducing Variable Length .. 17

2.8 Performance optimization ... 18

2.9 Outlook: Metadata editor .. 19

3 IP Studio: An Object-Based Audio Production tool ... 20

3.1 Object-Based Media Production .. 20

3.2 Challenges .. 20

3.3 Interface Design ... 20

3.3.1 Fader Panel mode .. 21

3.3.2 Routing Map mode .. 22

3.3.3 Sidebar ... 23

3.4 Working Practices .. 24

3.5 Technical Information .. 25

3.6 System Architecture .. 25

3.7 Languages, Frameworks and Libraries ... 26

3.7.1 Backend.. 26

3.7.2 Frontend .. 27

4 ADMix tools suite ... 28

4.1 ADMix Player and ADMix Renderer ... 28

4.1.1 Current limitations ... 30

4.2 ADMix ExtractXML ... 30

4.3 ADMix Recorder ... 31

4.4 DAW Automation with ToscA .. 33

Appendix A Description of Sequoia Workflows ... 35

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 5 of 47

A.1 Import and export of ADM files ... 35

A.2 Creating ADM files from scratch .. 40

A.3 Recording to ADM .. 44

References ... 46

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 6 of 47

List of Figures

Figure 1: Internal structure of a Sequoia project ...9

Figure 2: ADM structure .. 10

Figure 3: VIP with open ADM project .. 10

Figure 4: Visualization of audio blocks in ADM [8] .. 11

Figure 5: Sequoia parameter curves ... 12

Figure 6: 3D surround editor ... 12

Figure 7: Waves surround tools plug in .. 13

Figure 8: Recording workflow using b<>com plugins ... 14

Figure 9: Signal flow of the renderer plugin .. 15

Figure 10: Rendering plugin based on MPEG-H .. 16

Figure 11: “Experience object-based audio” created by BR with added markers for interest level 18

Figure 12: Metadata editor concept ... 19

Figure 13: Interface Layout ... 21

Figure 14: Fader Panel interface ... 22

Figure 15: Routing Map interface ... 23

Figure 16: Sidebar modes .. 24

Figure 17: System Architecture ... 26

Figure 18: Main user interface of the ADMix Renderer .. 29

Figure 19: Scene viewer of the ADMix Renderer displaying the different objects together with the
loudspeakers of the rendering setup .. 29

Figure 20: Display of the programme content of the ADM file with Mute/Solo interaction on the
objects ... 29

Figure 21: User interface allowing to edit and visualize the position of the loudspeaker setup 30

Figure 22: Partial view of the XML metadata structure of and ADM file. The IDs shown in the boxes
are used internally to create connections between ADM elements (objects, packs, channels…) 31

Figure 23: Main window of the ADMix Recorder .. 32

Figure 24: Metadata editor and routing matrix of the ADMix Recorder .. 32

Figure 25: Scene viewer of the ADMix Recorder used to set the initial position of the objects and to
create / monitor their automation ... 33

Figure 26: Using the ToscA plugin to connect a DAW with the ADMix Recorder 34

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 7 of 47

Abbreviations

ADM Audio Definition Model, ITU-R BS.2076-1

AR Augmented Reality

DAW Digital Audio Workstation, e.g. MAGIX Sequoia

ES2016 ECMA Script Language Specification

HOA Higher Order Ambisonics

MPEG-H MPEG-H 3D Audio Standard, ISO/IEC 23008-3 (MPEG-H Part 3)

N3D-ACN One of the common Normalisation and Ordering conventions used for HOA streams.
N3D stands for full 3D normalisation and ACN for Ambisonic Channel Number.

SN3D-ACN One of the common Normalisation and Ordering conventions used for HOA streams.
SN3D stands for Schmidt semi-normalisation and ACN for Ambisonic Channel Number.

MPEG-4 MPEG-4 Standard, ISO/IEC 14496 – Coding of audio-visual objects

UMCP Universal Media Composition Protocol

VBAP Vector-based amplitude panning

VIP Virtual Project, standard project format for MAGIX Sequoia DAW

VR Virtual Reality

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 8 of 47

1 Introduction

Starting to produce content in an object-based broadcast environment comes with a number of new
considerations for audio engineers. It is essential to provide them with the appropriate tools, in order
to make this transition as comfortable as possible.

This document describes object-based production tools, which were created as part of WP3. It offers
details on the challenges and results of implementing features that are required for editing and
mixing in an object-based production environment.

Chapter 2 describes the development process of MAGIX’ DAW Sequoia to new object-based features
and workflows. Following that, BBC R&D’s newly created live mixing tool is presented in Chapter 3.
Finally, Chapter 4 provides updated and more detailed information on IRCAM’s ADMix tools,
previously covered in D3.5.

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 9 of 47

2 Extensions to the DAW Sequoia for object-based editing and
mixing

Sequoia is an object-based audio workstation from ORPHEUS partner MAGIX. Its roots go back into
the early 1990s when their first audio editor Samplitude was created.

From the very beginning Samplitude allowed the use of clip-based real-time effects – so called
“object effects”, which was a big advantage compared to widely used track-based effects, especially
for mastering purposes. Even in multi-track productions these clip-based effects helped to reduce the
number of tracks and increased the overall clarity of projects.

Sequoia was derived from Samplitude around 2000 as an extended version, specifically targeting
workflows in a broadcast environment. It contains a variety of enhancements such as database
support, 4-point cut, a professional crossfade editor and “MuSyC”, a special cutting principle
commonly used in classical music productions.

Based on this set of features, Sequoia is the ideal tool to be adapted to the new needs of object-
based broadcasting in the context of the ORPHEUS project. The following sections show the
challenges of this process as well as the implemented solutions to provide new object based
workflows for editing and mixing. More detailed step-by-step explanations of the new workflows are
provided in Appendix A.

2.1 Mapping the ADM to the project structure of Sequoia

Sequoia projects are so-called VIPs (virtual projects), which may contain any number of tracks and
busses. Each one of these tracks can hold any number of audio clips – virtual references to audio
files. Real-time effects can be applied to tracks, busses and the master section in the mixer. Tracks
can be grouped using so-called folder tracks, providing users with a way of organizing large projects
for a better overview. So far this is a common setup applicable to most DAWs.

Sequoia’s speciality however is the ability to process real time effects for each clip. This requires a
very flexible audio processing engine, since each clip on every track can hold its own chain of internal
effects as well as external VST plugins.

Being able to use effects on a per-clip-basis can be very helpful especially with lengthy projects,
where different parts of the audio need different effects. Without this feature, a high number of
tracks would need to be used, making it harder to manage an already large project. This workflow is
often used for mastering of whole CDs, DVDs or in classical music production with hundreds of clips
per musical piece.

A simplified model of Sequoia’s project structure with its four levels of hierarchy is depicted below in
Figure 1.

Figure 1: Internal structure of a Sequoia project

By comparison the ADM format allows for much more flexible ways of describing and organizing
audio and further associated metadata. There is no fixed hierarchy system, since objects can be
nested arbitrarily (see Figure 2).

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 10 of 47

Figure 2: ADM structure

Therefore it was a non-trivial task to decide on the best way of translating this model to Sequoias
internal project structure. At first it seemed like the obvious solution would be to map ADM objects
to Sequoia clips, but after discussing the most important use cases for ADM projects, it was decided
to have Sequoia tracks fulfil this role (see Figure 3).

Figure 3: VIP with open ADM project

The following factors brought us to this decision:

User Experience for audio engineers: We wanted to make the ADM integration as transparent and
comfortable as possible for audio engineers. They typically use tracks to organize large productions

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 11 of 47

and assign panning information and other metadata to these tracks.

Integration of interactivity features: The ADM allows for the definition of a variety of interactivity
features, giving the end client the means of presenting a more individualized experience. Within the
ORPHEUS project the focus has been on language switching and foreground/background balancing.
In both cases the audio material is typically represented in parallel tracks. Representing ADM objects
as clips would likely make the editing of these features rather tedious.

Current technical limitations: A normal track bus in Sequoia as well as any clips placed on it cannot
hold more than two audio channels and one set of automation parameters. An ADM object however
may contain any number of audio channels with individual pan and gain data. Representing ADM
objects as clips would require very extensive and time-consuming modifications to Sequoia’s internal
structures.

The sum of these factors led to the decision of representing ADM objects using tracks and ADM
content elements using folder tracks as a way of grouping objects together.

2.2 Automation of object parameters

One issue, which had to be overcome, was the import of parameter automation data from ADM files.
The ADM format does not support continuous curves for applicable parameters such as gain or pan.

Instead it defines blocks with a set duration, start time relative to the parent object, a set of values
for these parameters as well as information specifying if and how any linear interpolation between
the preceding and current blocks should be performed (see Figure 4).

Figure 4: Visualization of audio blocks in ADM [8]

For the initial ADM import implementation these audio blocks were directly converted to audio clips
in the DAW project, each with their respective parameter data assigned. For simple demonstrations
this worked fine, but importing more complex productions would result in generating possibly
hundreds or thousands of small independent audio clips per track. Starting to make edits from here
would be very frustrating for an audio engineer. For an ADM export the engineer would also need to
make sure that any clips in the project that use automation are split up sufficiently, because only one
value per clip would be written to the resulting ADM block.

In the current implementation all sequential audio blocks are merged into one clip in the DAW and
only one set of parameter curves per track is generated from all block parameter data of an object
channel. With this solution the editing can take place in the usual convenient way. During export
these audio clips are then automatically split into blocks corresponding to any existing automation
curves (see Figure 5).

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 12 of 47

Figure 5: Sequoia parameter curves

2.3 Introducing 3D panning

Another important enhancement of Sequoia to support editing and mixing in an ADM context was
the introduction of 3D surround panning. The existing x-y-surround panning was extended by a new
z-coordinate, since ADM audio objects describe their surround position in three-dimensional space,
even if their position is static or moves in only two dimensions.

Further, new speaker presets were added to support common 3D loudspeaker setups, such as 4+5+0
or 4+7+02. The user interface for panning had to be enhanced as well. The z-coordinate is now
represented with a slider and the current height of the source and speakers are visualized using
coloured circles (see Figure 6).

Figure 6: 3D surround editor

2
 ITU notation for height+midlle+buttom layer

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 13 of 47

To create better 3D-panning results using Sequoias built-in surround module, a new panning
algorithm based on the VBAP approach (vector-based amplitude panning) was implemented. VBAP
ensures that the audible energy of an audio signal is kept constant regardless of its position i.e. an
object can be moved freely without creating unexpected volume changes.

As another option, third party panning plugins such as the “WAVES 360 Surround Tools” (see Figure
7) may be used to control the 3D panning of an audio signal. Sequoia’s support for the corresponding
aspects of the VST interface were improved to make this a possibility.

Figure 7: Waves surround tools plug in

2.4 Recording to ADM

One of the aspects of the production workflow within the envisaged architecture of ORPHEUS is the
recording and processing of 3D audio signals. For that purpose ORPHEUS partner b<>com developed
a set of VST plugins. To offer a simple way of feeding such recordings to the rest of the chain, a
special recording workflow was developed.

The aim of creating this workflow was to provide a simple approach for:

1. Using input from an Eigenmike (mh acoustics) consisting of 32 channels,

2. Processing this input using b<>com’s plugins to create an HOA representation of the
recording and in turn to create a speaker rendering from the HOA signals and

3. Writing the results to an ADM file.

This posed several challenges to Sequoia.

Firstly, the width of the surround master bus had to be expanded from the previous 12 to 32
channels. With this enhancement and some improvements of the handling of multichannel effects
plugins, the 32 input signals could be routed to this bus and the processing plugins could be inserted
on it. At this point playing back the speaker rendering was possible. This signal flow is illustrated
below in Figure 8.

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 14 of 47

Figure 8: Recording workflow using b<>com plugins

For the final step a special behaviour of the ADM export functionality was implemented. Creating a
folder track with a specific label next to the input tracks changes the export in the following way: The
audio portion of the export is generated using the output of the surround master bus instead of
performing the usual track bounce. However the accompanying metadata is based on the folder
track. By adding tracks with pan positions that reflect the chosen target speaker layout, the user can
now render and export the recording to an ADM file at once. The extra steps of creating the folder
track and its contents can also be done once beforehand and then be saved as a project template of
the given speaker layout for future use.

Section 2.10.3 provides a step-by-step guide for this newly created workflow.

2.5 Integration of a rendering solution

A fundamental aspect of object-based audio is that the final rendering is produced on the end-users
device instead of the audio engineers mixing desk to allow for a listening experience, which is
tailored to the end-user’s individual circumstances, preferences and interactive choices. To produce
suitable content, the audio engineer needs to be able to simulate the end-user experience as part of
the pre-production process in order to guarantee the best possible audio quality in all cases.
Integrating a rendering solution directly into the DAW would allow to monitor the different
outcomes of mixing decisions in a way that is both seamless and familiar to the audio engineer.

For Sequoia, an integrated rendering solution was realized in form of a set of internal effects plugins.
During playback, one plugin – the ‘RenderCollector’ – is inserted on all input tracks and aggregates
audio buffers and the corresponding metadata (e.g. gain automation). The other plugin – the
‘Renderer’ – sits on the surround master bus and receives this data at once (see screenshot below).
This is where the actual processing takes place. The results can be listened to from the surround
master output (see Figure 9).

This behaviour bypasses parts of Sequoia’s internal processing chain such as volume and pan
processing. Other effects on tracks or clips can still be used freely. Creating and editing pan
automation is still possible using the panning dialog since the resulting automation curves are read
when aggregating data.

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 15 of 47

Figure 9: Signal flow of the renderer plugin

Initially it was planned to integrate an anticipated ITU baseline renderer, but no results were
available in the task’s time frame. In the end, rendering based on MPEG-H was implemented with
support from ORPHEUS partner Fraunhofer IIS (see Figure 10). This approach has the advantage of
the same rendering algorithms being used on the end-user device. The supported render target
formats include standard 2D setups such as stereo or 5.1, 3D setups with height speakers such as
4+7+0 as well as the option of binaural output.

The implemented solution does have some caveats as well. The MPEG-H renderer expects the
metadata in a format different from ADM and a direct format conversion presents a complex
challenge. This is still being investigated at Fraunhofer. Currently only a very simple conversion is
performed, but more complex features e.g. switching language versions are not implemented yet.
Also the renderer comes with the limitations of MPEG-H in accordance with the corresponding
complexity level. This affects a number of factors e.g. number of objects rendered in parallel.

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 16 of 47

Figure 10: Rendering plugin based on MPEG-H

2.6 Further ADM metadata editing

While it was possible to find mappings of some parts of the ADM to Sequoia’s internal structures,
there are many more, which don’t have an obvious equivalent in the DAW. A separate solution had
to be found.

In Sequoia it is possible for the user to add comments to clips, tracks or whole projects. This
functionality was created as a means of easily taking quick notes e.g. about mixing decisions that
were made. Having this kind of information saved right within a project file is a convenient way of
relaying thoughts or plans to another user in a collaborative setting or keeping this information for
when a project is reopened years later.

The track comment field can now be used to access or add metadata to ADM objects by including
certain tags as well. For multichannel objects, such tags need to be included on the first associated
track only.

Feature Tagging format ADM relation

Language association [language=<desired language>] This tag sets the language of the ADM
audioProgram, and, if multiple
different language tags are used,
creates additional audioPrograms for
alternative language versions with the
corresponding objects tied to them.

Foreground/background
association

[foreground] This is represented by generating
additional objects labelled
‘foreground’ and ‘background’
without any referenced audio. They
only serve an additional way of
grouping the actual audio objects,
which are nested below them. Only

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 17 of 47

foreground objects need to be tagged.
All other objects are assigned to the
background implicitly. It should be
noted that this is not a standardized
field in the ADM, but rather a specific
way of using it. The feature was added
nevertheless, since it was deemed an
important use case.

Importance [importance=<0-10>] This assigns an importance value to an
object. Using this information a
renderer might choose to discard an
unimportant object e.g. when the load
of processing gets too high.

Interactive muting [onOffInteract] This tag indicates that a user may
mute the associated object
interactively. A preprocessing tool
might also use this information to
render a project to a channel bed,
while preserving interactive objects as
separate elements.

Table 1: ADM tags supported by Sequoia

This overall approach works quite well, provided the user has the required background knowledge.
Also, it is somewhat prone to error, since precise text input is required. A much-improved plan for
editing metadata has been laid out in section 2.11, though the implementation process is still
ongoing.

2.7 Introducing Variable Length

For pilot phase 2 of the project the ORPHEUS team decided to implement and demonstrate an
important interactive use case: Programs with a variable length. In practice this means, that, given a
certain level of interest, the same program can be listened to at different degrees of content depth
and therefore different lengths.

During production the content is to be sectioned and tagged to indicate which sections fit to the
following levels of interest:

 Level 1: A very short “headline” version, containing only the core message

 Level 2: A slightly longer version including all key information

 Level 3: An even longer version with additional background information

 Level 4: A more complete version, adding further details

 Level 5: The full version including all details, associations, etc.

These descriptions won’t necessarily fit for any production, but they provide a sense of how the
levels are expected to be used.

The task of the DAW is to provide the user with means of editing levels of interest. For Sequoia this
was realized in the form of markers on the project timeline, which can be set from the “marker
manager”. A marker indicates that all content between its location and the location of the next
marker are part of a certain interest level. By using keyboard shortcuts, they can be added easily
during playback. For an example with added markers see Figure 11.

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 18 of 47

Figure 11: “Experience object-based audio” created by BR with added markers for interest level

In addition, a preview mode has been implemented. By selecting a marker of any interest level, only
the sections of that level and levels below it will be played. Sections marked with a higher interest
level will be skipped.

For the ADM export these markers will be stored in the metadata chunk of the BW64 file conformant
to the EBUCore definition[27]. This information will then need to be transported further along the
broadcast chain to eventually be used on the end-user device.

As a future enhancement it seems to be useful and possible to mark also complete tracks / ADM
objects with interest levels. This could be used for improved handling of background music or
atmosphere audio.

2.8 Performance optimization

One of the most important features of any DAW in the audio production workflow is precise and
stable playback. The nature of ADM projects introduced some challenges for the real-time play
engine of Sequoia:

 3D audio recordings with 32 channels in combination with CPU intensive plugins per channel

 handling large numbers of tracks with lots of automation data

 real-time skipping of project parts for projects with variable length

In order to accommodate these demands the playback engine was optimized for performance in
several areas.

To handle the large amount of metadata a special metadata cache was implemented. This cache
gives the low latency engine fast access to the needed metadata of the actual play position.

The prefetching engine of Sequoia was improved to better utilise multi-core processors. This results
in a smoother playback of large projects, provided a CPU with 4 or more cores is being used.

Thanks to these intensive optimization efforts all ADM projects of the ORPHEUS project can be
edited comfortably and played back without issues on a typical Windows 10 Quadcore desktop PC
using ASIO low latency audio.

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 19 of 47

2.9 Outlook: Metadata editor

While the current mechanisms for editing metadata work fine in the context of a research project,
they present several issues, which make them unsuitable for a product release:

 Information that will contribute to ADM metadata generation is spread between several
places in a project.

 Using free text input requires a lot of background knowledge at the user end, is sensitive to
typing errors and can be difficult to validate.

 Currently the editing is still quite clear, but only a limited set of ADM attributes are
supported. Adding support for more features would make it hard to keep track everything
and eventually render the process unmanageable.

To address these issues, a concept for a dedicated metadata editing module for Sequoia was created.
The implementation process is currently ongoing. The following image shows a mock-up view of the
planned Sequoia ADM metadata editor (see Figure 12).

Figure 12: Metadata editor concept

The metadata editor is designed to bring the following advantages with it:

 All ADM metadata can be accessed and edited in one place.

 No special background knowledge of keywords is required. User input is directed by the GUI.

 The editor presents the object hierarchy directly and tracks of the DAW can be referenced by
the objects.

 Logical checks and warnings as well as ADM templates can be integrated.

 The editor can be easily maintained and expanded for future ADM developments.

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 20 of 47

3 IP Studio: An Object-Based Audio Production tool

This section introduces and details the implementation of an object-based audio control interface of
BBC’s IP Studio software, which was designed and used for ORPHEUS pilot phase 1A.

3.1 Object-Based Media Production

When producing an audio programme traditionally, an audio mixing console within a studio receives
various incoming audio sources. These could be real-time sources (such as from microphones) or pre-
recorded sources provided by some form of playout system or cart player. The console combines
these sources in to a single audio signal according to the control input of the console operator. This is
an irreversible process without employing complex source separation techniques, which may still
have very limited success. Essentially this means that all consumers receive the same, fixed audio
signal, regardless the consumers listening preferences or their device capabilities.

With object-based audio production, each audio source is sent to the consumer individually
accompanied by a stream of metadata. In essence, the ‘mixing console’ is no longer required to mix
audio, but simply to generate the representative metadata. The responsibility of actually mixing or
‘rendering’ the audio is then shifted to the consumer’s device. This means the mix can be adapted as
required for that particular consumer. The audio may be rendered according to the representative
metadata and/or options under the consumers’ control and/or their device capabilities.

As an example of device-oriented rendering, a device which provides only a headphone output would
render the audio in stereo, or perhaps binaurally to best recreate the three-dimensional soundscape.
For multichannel speaker layouts, the audio would be rendered to make optimal use of the speaker
configuration in order to replicate the soundscape as accurately as possible. This capability of object-
based audio delivers a significant advantage over existing workflows since the sound engineer no
longer needs to provide a bespoke mix for each of the channel configurations they wish to support.

An example of consumer-controlled rendering would be providing the ability to affect the
contribution of individual elements of the audio mix through UI controls. A consumer who is hard of
hearing may choose to turn down the music or ambience in a drama in order to hear the dialogue
more clearly, or perhaps a Welsh consumer may choose to swap the English commentary of a
football game with Welsh commentary.

The same ‘object-based’ concept can be applied to other types of media, such as video (for example,
the BBC R&D ‘Forecaster’ project [[4]]) or even text (such as in the ‘Atomised News’ project [[5]]).

3.2 Challenges

The concept of object-based audio has been used for decades in the computer games industry and
many projects have utilised object-based principles for the customisation of other experiences in the
past. The major challenge in this case was to establish a functioning broadcast chain to deliver
object-based audio experiences live. This is entirely unprecedented and marks a significant step
towards being able to deliver next generation audio and new content experiences to our consumers.

As with all projects, BBC R&D were keen to use existing standards where possible.

3.3 Interface Design

The interface operates as a single page web application. It is intended to be used on a touchscreen in
full screen mode at a display resolution of 1920x1080 or greater. However, it is designed to be
responsive and so will make best use of the screen space available.

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 21 of 47

The interface is divided in to three horizontal sections as illustrated by Error! Reference source not
found..

Figure 13: Interface Layout

The header (outlined in green) displays the selected studio, the open project, the broadcast state,
the time, and the current user. All of these components are clickable.

- The studio component presents a menu to select or configure a studio.

- The project component presents a project selection menu.

- The state component presents a menu to select between ‘On Air’ ‘Rehearse’ and ‘Off Air’.

- The time component will momentarily show the date.

- The user component presents a menu to log out or access user options.

The midsection (outlined in red) can be split in to two sections, showing a sidebar to the right and a
main section to the left. Alternatively, the sidebar can be hidden so that the main section can occupy
the entire width of the screen. The main section has different modes which present different user
interfaces to configure and control the project. The sidebar also has various modes for configuration
of faders, layers or the project itself. The midsection is used in its entirety when presenting the
Studio Configuration or User Options screen.

The purpose of the footer (outlined in blue) is to set the mode of the midsection. Buttons to the left
of the footer control the mode of the main section, and buttons to the right of the footer control the
mode and the visibility of the sidebar.

3.3.1 Fader Panel mode

This interface layout is intended to feel familiar to a sound engineer or desk operator by mimicking a
traditional mixing interface. A screenshot is provided in Figure 14.

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 22 of 47

Figure 14: Fader Panel interface

Faders are presented in channel strips with accompanying spatial position controls. The input sources
are presented as buttons at the top of each channel strip allowing each source to be switched in and
out of the faders mix. These buttons are colour-coded according to the type of source and the source
status; black indicates a feed from the output of another fader, blue indicates a real-time audio feed
(such as a microphone), and a green indicates a cart (pre-recorded audio clip). A red source warns
the user that the source cannot be located, and orange warns that the tool cannot communicate
with the playback application assigned for a pre-recorded source. When a pre-recorded source is
playing, the associated button will also display a progress bar.

As with many physical mixing consoles, faders can organised across different layers to simplify the
workspace. Faders can even exist across multiple layers.

3.3.2 Routing Map mode

This mode is designed to assist with the routing of audio objects within a project by providing a visual
representation of the routing graph and the ability to edit routes by simply interacting with the
graph. A screenshot is provided in Figure 15.

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 23 of 47

Figure 15: Routing Map interface

Circular nodes on the graph indicate faders. Square nodes indicate audio sources, with blue
representing a real-time source and green indicating a cart (pre-recorded source).

The graph is interactive; users can drag-and-drop nodes, the pan the view by dragging, and zoom by
using either a scroll-wheel or by using a pinch gesture on a touchscreen display.

With the Fader Select tool active, edges between nodes are solid if the source on the destination
fader is active, otherwise they will be dashed. Clicking on a fader using this tool will bring up the
Fader Properties sidebar. Clicking on an edge will toggle the active state of the associated source on
the destination fader, and clicking on a cart source node will active the source and begin playback.

Edges will turn red as a warning when the Route Edit tool is active. Using this tool, routes can be
removed by long-pressing/clicking on an edge. Routes can also be created by tapping a source node
(which will begin flashing to indicate that it is selected) followed by the destination node. Tapping the
source node again whilst it is selected (flashing) will unselect it and no route will be made.

3.3.3 Sidebar

The sidebar is a resizable pane positioned to the right of the interface which can be hidden when not
in use. The sidebar is used for configuration and customisation purposes, therefore providing three
modes; Project Properties, Layer Properties and Fader Properties as shown by the screenshots in
Figure 16

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 24 of 47

Figure 16: Sidebar modes

These panels are quite self-explanatory, but include some useful features worth noting.

The Fader Properties panel allows faders to be colour-coded for ease of identification. This colouring
is reflected in the panel border. Sources and meters can be added to faders by selecting them in the
provided dropdown boxes and clicking on the ‘Add’ button. Added sources and meters are listed in
the panel and can be removed with the buttons provided. Options in the dropdown boxes are colour-
coded similarly to source buttons. In the sources pane, a checkbox is provided to toggle mutually
exclusive behaviour of sources on a fader. When checked, activating one source on a fader will
deactivate all of the others. The metering pane has a feature can list meters per source, or per source
channel. There is also the option to add ‘triggerables’ to the fader.

The Layer Properties panel provides a simple, easy to use method to populate the current layer with
faders and to organise them. New faders can be created on the layer using the button provided. All
existing faders within the project are listed in rows, separated according to whether they exist on the
current layer or not. Each row provides the label of the fader and is are colour-coded accordingly.
The number next to each fader label indicates the number of layers that the fader is present on.
Faders can be add to, or removed from the current layer with the buttons provided. Faders on the
layer can be rearranged by simply dragging-and-dropping rows within the list.

3.4 Working Practices

To simplify workflows as much as possible, it was decided early on that the production interface
wouldn’t provide any specific signal bussing or grouping tools. Instead, faders would simply support
multiple input sources to achieve the same functionality. Additionally, a fader would be able to feed
another fader as a source. This enables complex routing graphs to be formed using just faders.

Faders can even act as signal switchers since any source on a fader can be activated or deactivated
on the fly. The ‘mutually exclusive’ mode allows only one source to be active at a time, providing
automatic clean switching.

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 25 of 47

3.5 Technical Information

The production tool was developed in two halves; a backend and the user interface (frontend). These
are stored in the orpheus-audio-control-backend and the orpheus-audio-control-interface GitHub
repositories respectively [[6]][[7]].

The backend application manages the project database, performs user authorisation, tracks client
sessions, and incorporates a web server (HTTP) and a WebSocket server. The user interface is
delivered to the client via this web server on port 90.

The frontend is responsible for;

- presenting a functional user interface,

- establishing and managing a WebSocket connection to the backend,

- sending commands to the backend and acting on received messages/responses,

- and connecting to the UMCP API and generating relevant composition data.

3.6 System Architecture

BBC R&D’s IP Studio is used as the underlying platform for the Orpheus project. It is used for source
acquisition and discovery, signal analysis (metering), signal routing, format conversion, and in-studio
rendering for monitoring purposes.

As Figure 17 illustrates, the production tool communicates with various IP Studio services and APIs in
order to discover available sources, receive metering data, and to control the playback of pre-
recorded audio clips.

The production tool also uses the UMCP (Universal Media Composition Protocol) API to build the
object-based production and to stream and store the representative metadata. For the Orpheus
project, this metadata stream was received by an IP Studio rendering processor for in-studio
monitoring and also translated to a serialised version of ADM (Audio Definition Model) [[8]] for
transmission to consumers.

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 26 of 47

Client MachineORPHEUS Host

UMCP Host

IP Studio Host #n

IP Studio Host #0

Production
Tool

Backend

Production
Tool

Frontend

WebSocket

HTTPS
Requests

HTTPS
Responses

Active
Directory

Server

User Credentials

MongoDB

UMCP API

UMCP Read/Write
Via WebSocket

(using UMCP JS Client)

Pipeline Manager API

Store Manager API

HTTP Request

HTTP Response

HTTP Request

HTTP Response

Meter Data Feed #0WebSocket

Meter Data Feed #x

PlayStoreApp Control #0

PlayStoreApp Control #y

WebSocket

Pipeline Manager API

Store Manager API

Meter Data Feed #0

Meter Data Feed #x

PlayStoreApp Control #0

PlayStoreApp Control #y

HTTP Request

HTTP Response

HTTP Request

HTTP Response

WebSocket

WebSocket

Figure 17: System Architecture

It could be argued that the backend should communicate with these hosts, thus abstracting the
frontend away from other APIs and reducing workload. However, since minimal latency is essential
for metering data, playback control, and particularly for UMCP data writes, it was decided that the
frontend should communicate with the host machines directly.

3.7 Languages, Frameworks and Libraries

Both the backend and frontend are written in JavaScript. More specifically, the frontend uses
ES2016. In both cases, a Babel transform plugin is used to support asynchronous functions for
cleaner promise-based code (expected to be supported in the currently unpublished ES2017
specification). Node Package Manager (NPM) [[9]] is used for package management and Webpack
[[10]] is used for module bundling and running the necessary transpilers and plugins.

3.7.1 Backend

The backend runs on Node JS and integrates with MongoDB. It also has a number of additional
dependencies;

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 27 of 47

- “activedirectory” authenticates user credentials (BBC login data) with Microsoft Active
Directory.

- “express” provides web server functionality, “express-session” tracks client sessions, and
“express-ws” provides a WebSocket server.

- “mongodb” provides an API to a MongoDB database to store studio, project and user data.

- “orpheus-ws-mux” [[11]] was developed in BBC R&D to combine NMOS event grains received
via multiple WebSockets from various sources and flows into one new flow on one single
WebSocket endpoint.

3.7.2 Frontend

The frontend runs in the browser. It was developed for and tested in Chrome 60. Other browsers
may be supported but are untested. The user interface is built using React [[12]] to manage dynamic
elements within the web application. Styling is provided by the Bootstrap framework [[13]] using the
Spacelab theme [[14]]. Among the other dependencies are;

- “cytoscape” is a JavaScript implementation of the popular Cytoscape graphing tool [[15]].
This is used in the Routing Map mode, discussed in section 3.3.2. “cytoscape-dagre”
produces the graph layout – a hierarchical, tree-based, directed, acyclic graph.

- “rc-slider” is used for the fader controls in each channel strip.

- “react-color” provides the colour palette used in the Fader Properties sidebar, discussed in
section 3.3.3.

- “react-copy-to-clipboard” provides ‘copy’ functionality for text data.

- “uuid” generates Universally Unique IDentifiers used frequently with UMCP.

- “tai-timestamp-js” [[16]] is a JavaScript class originally written by Matt Firth and Matthew
Shotton at BBC R&D. It is used for handling and converting NMOS (Networked Media Open
Specification [[17]]) timestamps efficiently to nanosecond accuracy without introducing
floating-point precision error. These NMOS timestamps are used by UMCP and throughout IP
Studio.

- A prebuilt version of “umcp-client” [[18]] at version 1.5.1 is included in the source code
directory of the interface. This provides a developer-friendly interface to the UMCP API [[19]]
in JavaScript.

- A modified version of meterws.js (as used in the IP Studio Audio Meter Bridge web
application) provides visualisations of metering data generated by IP Studio True-Peak Meter
processors.

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 28 of 47

4 ADMix tools suite

The ADMix tool suite of IRCAM has been already introduced in deliverable D3.5. In the following
sections a more detailed description is provided together with current limitations. It is largely
inspired from a paper written for the ICSA (International Conference on Spatial Audio) that took
place in Graz in September 2017. Originally developed for experimenting with incorporating reverb
into an object-based production workflow, the ADMix tool suite can be used in a more general
context to create, load and play back audio files containing ADM metadata. In its current state, only a
subset of the ADM specifications is supported, but many common use cases are already covered.

The ADMix tool suite is composed of four stand-alone components: Player, Renderer, Recorder and
ExtractXML. They are available for MacOS and MS Windows and can be freely downloaded from
Ircam forumnet (http://forumnet.ircam.fr/fr/produit/spat/admix-en).

The ADMix Player and ADMix Recorder can communicate with other programs via Open Sound
Control (OSC) [21]. The ADMix tools use an ad-hoc OSC syntax, which facilitates the communication
with other OSC-aware audio devices or software application. The ToscA plugin, developed before the
ORPHEUS project, can serve for instance as an ancillary tool to connect a Digital Audio Workstation
(DAW) to the ADMix Recorder. The ToscA plugin is also freely available from Ircam forumnet
(http://forumnet.ircam.fr/fr/produit/spat/tosca-en).

4.1 ADMix Player and ADMix Renderer

The ADMix Player can load WAV/BWF/BW64 files and read ADM metadata and channel assignments
from their respective chunks in the file. Upon loading a file, it performs a number of "sanity checks"
on the ADM metadata. This is helpful to check whether a given ADM file is compliant. The
ADMix Player plays back the audio content of the different audio objects contained in the file as
separate tracks and produces synchronized control messages based on the ADM metadata obtained
from the file.

The ADMix Renderer embeds an ADMix Player and exploits the audio object tracks and associated
metadata to calculate appropriate signals for real-time reproduction over headphones or
loudspeaker setups. The main user interface of the ADMix Renderer is shown in Figure 18. Summary
information about the content of the currently open file (number of objects, number of tracks,

duration, etc.) is displayed in the list on the right 1. Controls for playback

(start/stop/resume/loop/seek) are located on the left 2. A set of meters displays the level of the

different audio object tracks (outputs from the embedded ADMix Player) 3 whereas another set of

meters displays the level of the rendered output channels 4. On the lower right, the rendering

settings can be chosen 5.

The ‘view scene’ button opens a window displaying the current position of the different audio
objects and allows moving them interactively as long as there is no position metadata associated to
the object at current time (Figure 19). The ‘mute/solo’ button opens a window showing the different
audio objects and associated components (packs, channels). When clicking on a given object (here
the ‘Dialogue’ object), all linked components (content, pack, channels…) are highlighted (Figure 19).

http://forumnet.ircam.fr/fr/produit/spat/admix-en
http://forumnet.ircam.fr/fr/produit/spat/tosca-en

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 29 of 47

Figure 18: Main user interface of the ADMix Renderer

Figure 19: Scene viewer of the ADMix Renderer displaying the different objects together with the loudspeakers
of the rendering setup

Figure 20: Display of the programme content of the ADM file with Mute/Solo interaction on the objects

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 30 of 47

For the rendering of “object” type objects, vector based amplitude panning (VBAP) is used [20]. The
loudspeaker setup can be chosen from a predefined set of common loudspeaker setups (5.0/5.1,
6.0/6.1 … 22.0/22.2, 4.7.0) or by manually specifying custom loudspeaker positions (Figure 21). Up to
64 loudspeakers are supported. For binaural rendering, Head-Related Transfer Functions (HRTFs) can
be selected from HRTF datasets using the SOFA/AES69 format [22]. These HRTF can be accessed
either from datasets stored locally or through public web databases.

The rendering of “HOA” type objects is also implemented. Supported encoded HOA normalisation
and channel number conventions are N3D-ACN and SN3D-ACN. The HOA decoder follows the Energy
Preserving approach [23].

Figure 21: User interface allowing to edit and visualize the position of the loudspeaker setup

4.1.1 Current limitations

The current version of the ADMix Player and Renderer is limited to single Programme and single
Content ADM files, and only supports basic object attributes such as position and gain. The renderer
does not yet implement position interpolation, i.e. the objects jump immediately to the position
specified in the current AudioBlockFormat. Ongoing work is dedicated to the rendering of the
“diffuse” attribute, support for multiple Programme.

4.2 ADMix ExtractXML

Given a sound file with ADM metadata, ADMix ExtractXML exports an XML file containing only the
ADM metadata (i.e. the contents of the <axml> chunk). The content of the <chna> chunk is also
stored in a separate file. Like the ADMix Player, this tool runs several "sanity checks" on the
metadata to make sure it complies with the ADM specification. ADMix ExtractXML also creates
structural representations of the XML elements using the DOT graph description language [24]. An
example of such graph visualized with the Graph Visualization Software [25] is depicted in Figure 22.

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 31 of 47

Figure 22: Partial view of the XML metadata structure of and ADM file. The IDs shown in the boxes are used
internally to create connections between ADM elements (objects, packs, channels…)

4.3 ADMix Recorder

The ADMix Recorder is used to create, configure and record an ADM file. It can record up to
128 audio channels into a BWF/BW64 file. For each of these channels, it can also record automation
data that is stored as ADM metadata in the same file. The ADMix Recorder has a built-in renderer
that can be used for monitoring.

Figure 23 shows the main window of the ADM Recorder. The monitoring settings 1 in the bottom

right of the window are the same as for the ADMix Renderer described above. In the top left of the

main window, host and port settings 3 can be configured for receiving and sending OSC messages

that can transport ADM metadata between applications or between computers. This can be used
typically to exchange position or gain automation data with a Digital Audio Workstation (see section
4.4). Messages that are received via this interface are stored as XML metadata in the recorded ADM.

The "configure" button 2 opens a window for editing the ADM metadata.

On the top of this configuration window (Figure 24), the programme and content name can be

specified 1. Below that, a list of "audio packs" 2 and 3 can be set up. Each pack can contain one or

more "channels". Each channel has a unique channel number that can be used together with the

routing matrix on the left side of the window 4. Supported ADM object types are “object”, “HOA”,
“Direct Speakers” and “binaural”. For the "DirectSpeakers" type, one of a set of pre-defined channel-
based setups (e.g. stereo, 5.1, 22.2, 4.7.0 …) can be selected which populates automatically the
channels appropriately. For the “HO” type, the user is invited to specify the order (up to order 10)
and the normalization/channel order convention (SN3D-ACN, N3D-ACN). A "Binaural" pack
automatically contains two channels, one for the left and one for the right ear.

N.B. The current state of the ADMix Recorder only supports “flat structures”, i.e. no nested objects. It
does not yet support multiple programmes, multiple contents or ‘complementary objects’ (used for
instance to describe mutually exclusive languages).

Once the packs and channels are set up as desired, the “arm” button can be used to enable
recording. This will open a scene viewer window (Figure 25), which allows configuring the initial
positions of all audio objects. The scene window also allows moving objects with the mouse during
recording, which will record the object trajectories in the resulting ADM file.

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 32 of 47

Figure 23: Main window of the ADMix Recorder

Figure 24: Metadata editor and routing matrix of the ADMix Recorder

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 33 of 47

Figure 25: Scene viewer of the ADMix Recorder used to set the initial position of the objects and to create /
monitor their automation

4.4 DAW Automation with ToscA

In practice, it will be more convenient to connect the ADMix Recorder to a Digital Audio Workstation
(DAW), which can record automation data for multiple objects (possibly one after another). The DAW
can then play back all automation tracks at once, which in turn can be recorded by the ADMix
Recorder. A track with an LTC time code signal can be used to synchronize start and stop times
between the DAW and the ADM Recorder.

ToscA [21] is a plugin for Digital Audio Workstations (DAWs) that allows the recording of automation
tracks for arbitrary parameters that can be sent and received as OSC messages via a network
interface. Primarily developed for the remote control of spatial audio processors, this tool also turns
out to be very handy for "linking" the ADMix tools with a DAW. It can be used together with the
ADMix Recorder to record movements and changing gain values as automation tracks in a DAW.

An instance of the ToscA plugin has to be inserted into any track that is supposed to contain
automation data, see figure [26]. Each ToscA instance can then be configured with a channel ID that
is used to associate tracks in the DAW with channels defined in the ADM Recorder. The
ADMix Recorder will in turn store the recorded automation data in the ADM file.

The audio outputs of the DAW tracks can be provided to the ADM Recorder either via hardware
connections or via virtual sound drivers.

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 34 of 47

Figure 26: Using the ToscA plugin to connect a DAW with the ADMix Recorder

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 35 of 47

Appendix A Description of Sequoia Workflows

This appendix provides a quick introduction to the various new workflows, which were introduced to
deal with ADM files and 3D audio recordings in Sequoia. The explanations are also available in the
form of a tutorial video[28].

A.1 Import and export of ADM files

To import an existing ADM file, edit its content and export it as a new file, a Sequoia user needs to
follow these steps:

(1) Open ADM file using menu “File > Open” or “Files” Tab in the manager bar

(2) Zoom vertically to view all tracks of the ADM file

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 36 of 47

(3) Open mixer using key “m” and set mixer to surround mode

(4) Insert renderer plugin on the surround master bus

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 37 of 47

(5) Select target format in renderer plugin (e.g. 5.1 surround, stereo or binaural…)

(6) Start playback using space key or play button in transport control

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 38 of 47

(7) Open panning dialog using track pop up menu “Pan / Surround Editor”

(8) Edit static 3D panning in surround editor dialog

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 39 of 47

(9) Edit dynamic (automated) panning using the “Automation REC” button

(10) Make any other edits as described in the Sequoia Manual

(11) Export the project as an ADM file using menu “File > Save ADM file…”

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 40 of 47

(12) Select desired sampling format and click on “Audio export” to save audio and ADM metadata to
a new BW64 file

A.2 Creating ADM files from scratch

To create an ADM file from scratch and edit metadata for interactive language selection and
foreground / background grouping a Sequoia user needs to follow these steps:

(1) Open new project with the desired track number and sample rate (can be changed later at any
time)

(2) Select the desired number of tracks (by Ctrl-Click) for the first content folder, e.g. for background
music

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 41 of 47

(3) Add folder track for first audio content using menu “Track > Insert new Tracks > New Folder
Track” (currently selected tracks are automatically added to the new folder track)

(4) Rename tracks of multi-channel objects with using the suffixes _1, _2 etc.

(5) Repeat these steps for new content folders, e.g. for speech tracks in multiple languages

(6) Load music and speech audio files into the prepared tracks using “Files” tab in the manager
section of menu “File > Import”

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 42 of 47

(6) Tag foreground (speech) tracks with the keyword [foreground] in the track comment section of
the “Info” manager tab

(7) Tag language per track in the same way using the keyword [language=de/en/fr]

(8) Setup renderer plugin as described in section A.1 (steps 3 – 6)

(9) Open panning dialog using the track menu “Pan/Surround Editor”

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 43 of 47

(10) Switch to “3D” panning mode , “Mono” tracks and drag panning position to the desired location

(11) Add dynamic panning using the “Automation Record” section. Draw panning automation during
playback.

(12) Edit panning curves in the tracks manually if needed

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 44 of 47

(13) Export the project via “File > Save ADM file”

(14) Set desired sampling format and click “Audio export” to save project into BW64 file with ADM
metadata

A.3 Recording to ADM

(1) Create a project with 32 tracks to directly record or import existing “Eigenmike” microphone
signals

(2) Set the project to surround from the mixer interface and select the 32.0 preset combined with the
routing option “Assign tracks to surround channels” which will automatically route each track to one
sub-bus

(3) Insert b<>com “MicProcessor” plugin on the surround master bus, which will convert microphone
signals to HOA

(4) Insert b<>com “RenderHOA2Spk” plugin on the surround master bus, which will convert HOA
signals to your target speaker format

(5) Create a new folder track containing the track count of the selection target speaker format (e.g. 6
tracks for 5.1 speaker format) and pan the tracks to the corresponding positions

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 45 of 47

(6) Label the folder track following the special naming convention “##RECORDING”

(7) Use menu File > ADM Export to create an ADM file containing the rendered output combined
with metadata generated from the “dummy” folder track

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 46 of 47

References

[1] ORPHEUS, https://orpheus-audio.eu/

[2] Fraunhofer IIS, https://www.iis.fraunhofer.de/en.html

[3] Horizon 2020, European Commission. https://ec.europa.eu/programmes/horizon2020/

[4] Forecaster: our experimental object-based weather forecast, December 2015, Leonard, M.
http://www.bbc.co.uk/rd/blog/2015-11-forecaster-our-experimental-object-based-weather-
forecast

[5] Atomised News - with BBC R&D, http://bbcnewslabs.co.uk/projects/atomised-news/

[6] orpheus-audio-control-backend, https://github.com/bbc/orpheus-audio-control-backend

[7] orpheus-audio-control-interface, https://github.com/bbc/orpheus-audio-control-interface

[8] Audio Definition Model (ADM): BS.2076-1, June 2017, ITU. https://www.itu.int/rec/R-REC-
BS.2076-1-201706-I/en

[9] NPM, https://www.npmjs.com/

[10] Webpack, https://webpack.js.org/

[11] orpheus-ws-mux, https://github.com/bbc/ips-orpheus-ws-mux

[12] React, Facebook. https://facebook.github.io/react/

[13] Bootstrap Framework, http://getbootstrap.com/

[14] Spacelab Theme, Bootswatch, https://bootswatch.com/spacelab/

[15] Cytoscape, http://www.cytoscape.org/

[16] tai-timestamp-js, https://github.com/bbc/tai-timestamp-js

[17] Networked Media Open Specifications (NMOS), https://nmos.tv/

[18] umcp-client, https://github.com/bbc/umcp-client

[19] umcp-production-api, https://github.com/bbc/umcp-production-api

[20] Pulkki, V., Virtual sound source positioning using Vector Base Amplitude Panning, Journal of the
Audio Engineering Society, 45(6):456-466, 1997.

[21] Carpentier, T., ToscA: An OSC communication plugin for object-oriented spatialization
authoring, In 41st International Computer Music Conference, 2015, https://hal.archives-
ouvertes.fr/hal-01247588v1/

[22] Majdak, P., Iwaya, Y., Carpentier, T., Nicol, R., Parmentier, M., Roginska, A., Suzuki, Y.,
Watanabe, K., Wierstorf, H., Ziegelwanger, H. and Noisternig, M., Spatially Oriented Format for
Acoustics: A data exchange format representing Head-Related Transfer Functions, In 134th AES
Convention, 2013

[23] Zotter, F., Pomberger, H., Noisternig, M., Energy-Preserving Ambisonic Decoding, Acta Acustica
United with Acustica, Vol. 98:37-47, 2012

[24] Gansner, E. and North, S., An open graph visualization system and its applications to software
engineering. Software: Practice and Experience, 30(11):1203{1233, September 2000

[25] Graph Vizualization Software, http://www.graphviz.org

[26] Geier, M., Carpentier, T., Noisternig, M., Warusfel, O., Software tools for object-based audio
production using the Audio Definition Model, in Proceedings of Int. Conf. on Spatial Audio, Graz,

September 2017. http://hal.archives-ouvertes.fr/hal-01574183

https://orpheus-audio.eu/
https://www.iis.fraunhofer.de/en.html
https://ec.europa.eu/programmes/horizon2020/
http://www.bbc.co.uk/rd/blog/2015-11-forecaster-our-experimental-object-based-weather-forecast
http://www.bbc.co.uk/rd/blog/2015-11-forecaster-our-experimental-object-based-weather-forecast
http://bbcnewslabs.co.uk/projects/atomised-news/
https://github.com/bbc/orpheus-audio-control-backend
https://github.com/bbc/orpheus-audio-control-interface
https://www.itu.int/rec/R-REC-BS.2076-1-201706-I/en
https://www.itu.int/rec/R-REC-BS.2076-1-201706-I/en
https://www.npmjs.com/
https://webpack.js.org/
https://github.com/bbc/ips-orpheus-ws-mux
https://facebook.github.io/react/
http://getbootstrap.com/
https://bootswatch.com/spacelab/
http://www.cytoscape.org/
https://github.com/bbc/tai-timestamp-js
https://nmos.tv/
https://github.com/bbc/umcp-client
https://github.com/bbc/umcp-production-api
https://hal.archives-ouvertes.fr/hal-01247588v1/
https://hal.archives-ouvertes.fr/hal-01247588v1/
http://www.graphviz.org/
http://hal.archives-ouvertes.fr/hal-01574183

D3.6: Implementation and documentation of object-based editing and mixing

© 2015 - 2018 ORPHEUS Consortium Parties Page 47 of 47

[27] EBUcore Metadata Set: Tech 3293, October 2017, EBU. https://tech.ebu.ch/MetadataEbuCore

[28] ADM workflows in Sequoia, MAGIX. https://youtu.be/lmUbNZYQmSw

https://tech.ebu.ch/MetadataEbuCore
https://youtu.be/lmUbNZYQmSw

